期刊文献+

Spectral Matching Classification Method of Multi-State Similar Pigments Based on Feature Differences 被引量:2

下载PDF
导出
摘要 The properties of the same pigments in murals are affected by different concentrations and particle diameters,which cause the shape of the spectral reflectance data curve to vary,thus influencing the outcome of matching calculations.This paper proposes a spectral matching classification method of multi-state similar pigments based on feature differences.Fast principal component analysis(FPCA)was used to calculate the eigenvalue variance of pigment spectral reflectance,then applied to the original reflectance values for parameter characterization.We first projected the original spectral reflectance from the spectral space to the characteristic variance space to identify the spectral curve.Secondly,the relative distance between the eigenvalues in the eigen variance space is combined with the JS(Jensen-Shannon)divergence to express the difference between the two spectral distributions.The JS information divergence calculates the relative distance between the eigenvalues.Experimental results showthat our classification method can be used to identify the spectral curves of the same pigment under different states.The value of the root means square error(RMSE)decreased by 12.0817,while the mean values of the mean absolute percentage error(MAPE)and R2 increased by 0.0965 and 0.2849,respectively.Compared with the traditional spectral matching algorithm,the recognition error was effectively reduced.
出处 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第4期513-527,共15页 工程与科学中的计算机建模(英文)
基金 This work was supported in part by the National Science Foundation of China:Shaanxi Natural Science Basic Research Project(2021JM-377) Science and Technology Cooperation Project of Shaanxi Provincial Department of Science and Technology(2020KW-012) University Talent Service Enterprise Project of Xi’an Science and Technology Bureau(GXYD10.1)。
  • 相关文献

参考文献13

二级参考文献121

共引文献240

同被引文献12

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部