期刊文献+

Machine Learning Enhanced Boundary Element Method:Prediction of Gaussian Quadrature Points 被引量:2

下载PDF
导出
摘要 This paper applies a machine learning technique to find a general and efficient numerical integration scheme for boundary element methods.A model based on the neural network multi-classification algorithmis constructed to find the minimum number of Gaussian quadrature points satisfying the given accuracy.The constructed model is trained by using a large amount of data calculated in the traditional boundary element method and the optimal network architecture is selected.The two-dimensional potential problem of a circular structure is tested and analyzed based on the determined model,and the accuracy of the model is about 90%.Finally,by incorporating the predicted Gaussian quadrature points into the boundary element analysis,we find that the numerical solution and the analytical solution are in good agreement,which verifies the robustness of the proposed method.
出处 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第4期445-464,共20页 工程与科学中的计算机建模(英文)
基金 The authors thank the financial support of National Natural Science Foundation of China(NSFC)under Grant(No.11702238).
  • 相关文献

参考文献2

二级参考文献3

共引文献15

同被引文献5

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部