期刊文献+

基于主题聚类的新媒体政务互动内容摘要生成研究 被引量:3

Abstracting Interactive Contents from New Media for Government Affairs Based on Topic Clustering
原文传递
导出
摘要 【目的】基于主题聚类生成新媒体政务互动内容舆情摘要,保障政府部门对舆情事件的及时准确把控。【方法】从互动内容文本特征分析入手,通过Top2Vec主题聚类、TextRank抽取式摘要生成和TransformerCopy生成式摘要生成,多角度呈现新媒体政务互动内容的摘要内涵。【结果】模型的ROUGE-1、ROUGE-2和ROUGE-L值分别达到22.05%、6.93%和20.96%,对比发现其效果优于Seq2Seq和Seq2Seq-Attention模型。【局限】仅获取了10部法律法规草案的微博政务互动内容,未在更广泛的新媒体政务互动内容中验证本文方法。【结论】本文方法能够揭示事件主题类别和舆情摘要,具备一定的领域适应性和应用优势。 [Objective] This paper tries to summarize interactive contents from new media for government affairs based on topic clustering, aiming to help the government effectively control public opinion events. [Methods]First, we analyzed the textual features of the interactive contents. Then, we generated abstracts for the contents with the Top2Vec, TextRank and Transformer-Copy algorithms. [Results] The proposed model’s ROUGE-1,ROUGE-2 and ROUGE-L values reached 22.05%, 6.93% and 20.96%, respectively, which were better than those of the Seq2Seq and Seq2Seq-Attention models. [Limitations] We only examined the new model with interactive contents on 10 draft laws and regulations from Sina Microblog. [Conclusions] The proposed method can summarize the topics and public opinion on specific events.
作者 胡吉明 郑翔 Hu Jiming;Zheng Xiang(School of Information Management,Wuhan University,Wuhan 430072,China;Information Retrieval and Knowledge Mining Laboratory,Wuhan University,Wuhan 430072,China)
出处 《数据分析与知识发现》 CSSCI CSCD 北大核心 2022年第6期95-104,共10页 Data Analysis and Knowledge Discovery
基金 国家自然科学基金面上项目(项目编号:71874125) 湖北省青年拔尖人才培养计划项目的研究成果之一。
关键词 新媒体 政务互动内容 摘要生成 主题聚类 New Media Government Affairs Interactive Content Summarization Generation Topic Clustering
  • 相关文献

参考文献14

二级参考文献94

  • 1姚建民,周明,赵铁军,李生.基于句子相似度的机器翻译评价方法及其有效性分析[J].计算机研究与发展,2004,41(7):1258-1265. 被引量:17
  • 2秦兵,刘挺,陈尚林,李生.多文档文摘中句子优化选择方法研究[J].计算机研究与发展,2006,43(6):1129-1134. 被引量:13
  • 3BALAHUR A, STEINBERGER R, KABADJOV M, et al. Sentiment analysis in the news[ J]. Infrared Physics and Technology, 2014, 65:94-102. 被引量:1
  • 4JIANG Long, YU Mo, ZHOU Ming, et al. Target-dependent twitter sentiment classification[ C ]//Proc of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Techno- logies . 2011. 被引量:1
  • 5王金刚,于潇,宋丹丹,等.基于中文bag-of-opinions方法的微博情感分析[C]//NLP&CC.2012. 被引量:1
  • 6PAK A, PAROUBEK P. Twitter as a corpus for sentiment analysis and opinion mining [ C ]//Proc of International Conference on Lan- guage Resources and Evaluation. 2010. 被引量:1
  • 7TABOADA M, BROOKE J, TOFILOSKI M, et al. Lexicon-based methods for sentiment analysis [ J ]. Computational Linguistics, 2011, 37(2) : 267-307. 被引量:1
  • 8LUCIANO B, FENG Jun-lan. Robust sentiment detection on twitter from biased and noisy data[ C]//Proc of the 23rd International Con- ference on Computational Linguistics. 2010. 被引量:1
  • 9PANG Bo, LEE L, VAITHYANATHAN S. Thumbs up? Sentiment classification using machine learning techniques [ C ]//Proc of Confe- rence on Empirical Methods in Natural Language Processing. 2002: 79- 86. 被引量:1
  • 10CUI Hang, MITYAL V, DATAR M. Comparative experiments on senti- ment classification for online product reviews [ C ]//Proc of the 21st National Conference on Artificial Intelligence. 2006: 1265-1270. 被引量:1

共引文献217

同被引文献42

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部