期刊文献+

Learning robust features by extended generative stochastic networks

原文传递
导出
摘要 Deep neural networks have achieved state-of-the-art performance on many object recognition tasks,but they are vulnerable to small adversarial perturbations.In this paper,several extensions of generative stochastic networks(GSNs)are proposed to improve the robustness of neural networks to random noise and adversarial perturbations.Experimental results show that compared to normal GSN method,the extensions using adversarial examples,lateral connections and feedforward networks can improve the performance of GSNs by making the models more resistant to overfitting and noise.
出处 《International Journal of Modeling, Simulation, and Scientific Computing》 EI 2018年第1期135-145,共11页 建模、仿真和科学计算国际期刊(英文)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部