期刊文献+

Cycle temporal algorithm-based multivariate statistical methods for fault diagnosis in chemical processes 被引量:2

下载PDF
导出
摘要 Multivariate statistical process monitoring methods are often used in chemical process fault diagnosis.In this article,(I)the cycle temporal algorithm(CTA)combined with the dynamic kernel principal component analysis(DKPCA)and the multiway dynamic kernel principal component analysis(MDKPCA)fault detection algorithms are proposed,which are used for continuous and batch process fault detections,respectively.In addition,(II)a fault variable identification model based on reconstructed-based contribution(RBC)model that paves the way for determining the cause of the fault are proposed.The proposed fault diagnosis model was applied to Tennessee Eastman(TE)process and penicillin fermentation process for fault diagnosis.And compare with other fault diagnosis methods.The results show that the proposed method has better detection effects than other methods.Finally,the reconstruction-based contribution(RBC)model method is used to accurately locate the root cause of the fault and determine the fault path.
出处 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第7期54-70,共17页 中国化学工程学报(英文版)
基金 financial support from the National Natural Science Foundation of China (21706220)
  • 相关文献

参考文献6

二级参考文献7

共引文献18

同被引文献15

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部