期刊文献+

Reconstructing the Time-Dependent Thermal Coefcient in 2D Free Boundary Problems

下载PDF
导出
摘要 The inverse problem of reconstructing the time-dependent thermal conductivity and free boundary coefcients along with the temperature in a two-dimensional parabolic equation with initial and boundary conditions and additional measurements is,for the rst time,numerically investigated.This inverse problem appears extensively in the modelling of various phenomena in engineering and physics.For instance,steel annealing,vacuum-arc welding,fusion welding,continuous casting,metallurgy,aircraft,oil and gas production during drilling and operation of wells.From literature we already know that this inverse problem has a unique solution.However,the problem is still ill-posed by being unstable to noise in the input data.For the numerical realization,we apply the alternating direction explicit method along with the Tikhonov regularization to nd a stable and accurate numerical solution of nite differences.The root mean square error(rmse)values for various noise levels p for both smooth and non-smooth continuous time-dependent coef-cients Examples are compared.The resulting nonlinear minimization problem is solved numerically using the MATLAB subroutine lsqnonlin.Both exact and numerically simulated noisy input data are inverted.Numerical results presented for two examples show the efciency of the computational method and the accuracy and stability of the numerical solution even in the presence of noise in the input data.
作者 M.J.Huntul
出处 《Computers, Materials & Continua》 SCIE EI 2021年第6期3681-3699,共19页 计算机、材料和连续体(英文)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部