期刊文献+

基于NB⁃IoT的水质监测系统研究 被引量:4

Research on water quality monitoring system based on NB⁃IoT
下载PDF
导出
摘要 为提高水质监测系统的网络覆盖范围,优化数据云存储功能,文中基于窄带物联网(NB⁃IoT)技术,设计一种远程水质监测系统。该系统由终端设备、物联网云平台和北向应用组成。终端设备主要由STM32L431RCT6单片机、BC35⁃G模组及各种水体传感器组成,基于LiteOS物联网操作系统实现温度、pH值、溶解氧、电导率等水质信息的采集,经过滤波处理后发送至华为云平台;云平台管理设备Profile文件及设备编解码插件;北向应用实现数据管理及命令下发功能。经现场测试,系统采集的温度、电导率、pH值及溶解氧4种水质参数的平均相对误差分别为0.28%,1.52%,0.23%,3.45%,各项测量误差均符合标准;数据传输的平均丢包率为0.46%,数据传输稳定性较高,可满足水质监测实时性和精度的要求。 In order to improve the network coverage of water quality monitoring system and optimize the data cloud storage function,a remote water quality monitoring system is designed based on narrow band Internet of Things(NB⁃IoT).The system is composed of terminal equipments,IoT cloud platform and northbound application.The terminal equipment is mainly composed of STM32L431RCT6 MCU(microprogrammed control unit),BC35⁃G module and various water sensors.Based on the LiteOS IoT operating system,the collection of water quality information such as temperature,PH value,dissolved oxygen and conductivity is realized and sent to Huawei cloud platform after filtering processing.The cloud platform can manage device Profile file and device CODEC(coder and decoder)plug⁃in,and the northbound application can realize the functions of data management and command distribution.According to the field test,the average relative errors of four water quality parameters(temperature,conductivity,pH value and dissolved oxygen)collected by the system are 0.28%,1.52%,0.23%and 3.45%respectively,which meet the standards.The average packet loss rate of data transmission is 0.46%,and the stability of data transmission is high,which can meet the requirements of real time performance and accuracy of water quality monitoring.
作者 王军 胡刚雨 肖晶晶 WANG Jun;HU Gangyu;XIAO Jingjing(School of Mechanical and Electrical Engineering,Jiangxi University of Science and Technology,Ganzhou 341000,China)
出处 《现代电子技术》 2022年第16期50-54,共5页 Modern Electronics Technique
基金 赣州市科技项目(赣市科发[2020]60号)。
关键词 水质监测 数据云存储 窄带物联网 系统设计 数据采集 现场测试 云平台管理 water quality monitoring data cloud storage NB⁃IoT system design data acquisition field test cloud platform management
  • 相关文献

参考文献12

二级参考文献158

共引文献199

同被引文献37

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部