摘要
行为识别作为计算机视觉领域研究的热点,在当今社会的智能安防、智能监控、智慧医疗等领域有着广泛的应用,而将在在计算机视觉方面有着突出表现的深度学习应用在行为识别研究上效果便更加显著.相较于传统基于手动特征提取方法,基于深度学习的行为识别方法具有速度快、鲁棒性强、准确率高等优点,因此文章针对基于深度学习中的视频行为识别方法进行综述.通过对国内外最新发表的相关文献进行归纳总结,首先阐述分析了传统行为识别方法以及相应改进点,依照网络架构的不同详细梳理基于深度学习的行为识别方法,继而研究对比常见的识别数据集并且比较各算法在数据集上的表现优劣,最后对本领域的研究进行总结,侧重于存在的问题对未来进行了展望,希望可以对之后研究者予以启迪和帮助.
As a research hotspot in the field of computer vision,behavior recognition has been widely applied in intelligent security,intelligent monitoring,intelligent medical treatment and other fields in today's society,and the application of deep learning,which has outstanding performance in computer vision,has a more significant effect on behavior recognition research.Compared with the traditional method based on manual feature extraction,the behavior recognition method based on deep learning has the advantages of fast speed,strong robustness and high accuracy.Therefore,this paper summarizes the video behavior recognition method based on deep learning.At home and abroad based on the latest published paper summarizes relevant literature,firstly analyzes the traditional behavior recognition method and the corresponding improvement points,according to different network architecture detailed carding behavior recognition method based on the deep study,then study the comparison of common recognition data sets and the performance of the algorithm in the data set is comparing the advantages and disadvantages,finally summarizes the research of this field,This paper focuses on the existing problems and looks into the future,hoping to enlighten and help researchers.
作者
袁首
乔勇军
苏航
陈青华
刘星
YUAN Shou;QIAO Yongjun;SU Hang;CHEN Qinghua;LIU Xing(Naval Aviation University,Yantai 264001,Shangdong,China;Unit 91967 of the PLA,Xingtai 054102,Hebei,China)
出处
《微电子学与计算机》
2022年第8期1-10,共10页
Microelectronics & Computer
基金
军队“十三五”模拟仿真体系建设项目(2021-HCX-MN-050014)。
关键词
行为识别
深度学习
手动特征
网络架构
数据集
behavior recognition
deep learning
the manual features
the network architecture
the dataset