期刊文献+

基于卷积神经网络的扁桃体咽拭子采样机器人 被引量:2

Sampling Robot for Tonsil Swabs Based on Convolutional Neural Network
下载PDF
导出
摘要 针对医务人员咽拭子采样时有较高被传染风险,提出咽拭子采样机器人。采样需检测、识别和定位扁桃体的位置信息,由于扁桃体在原图中尺寸较小、特征提取困难,设计基于卷积神经网络的两步检测模型。第一步,使用口腔检测模块将口腔图像从自制的人体面部数据集中检测并切割出来;第二步,在口腔图像基础上,识别位扁桃体的位置信息。结合深度图像计算扁桃体在机器人世界坐标系的坐标,控制机械臂运动到指定位置,实现咽拭子采样。实验证明,系统使用基于卷积神经网络的扁桃体两步检测模型具有较高的准确性和检测效率,检测结果的AP50和检测平均时间均优于对比算法且能够准确地完成咽拭子采样。 In view of the high risk of infection in throat swab sampling of medical staff,this paper proposes a throat swab sampling robot.Sampling needs to detect,identify and locate the position information of tonsils.Because the size of tonsils in the original image is small and feature extraction is difficult,a two-step detection model based on convolutional neural network is designed in this paper.The first step is to use the oral cavity detection module to centrally detect and cut out oral cavity images from self-made human face data.Step 2,based on the oral image,the position information of tonsils are identified.Then,combined with the depth image,the coordinates of tonsils in the robot world coordinate system are calculated,and the robot arm is controlled to move to the designated position,thus realizing throat swab sampling.Experiments show that the tonsil two-step detection model based on convolutional neural network has high accuracy and detection efficiency,and the AP50 of detection results and the average detection time are better than the contrast algorithm,and the throat swab sampling can be completed accurately.
作者 李顺君 钱强 史金龙 葛俊彦 茅凌波 LI Shunjun;QIAN Qiang;SHI Jinlong;GE Junyan;MAO Lingbo(School of Computer Science,Jiangsu University of Science and Technology,Zhenjiang,Jiangsu 212100,China)
出处 《计算机工程与应用》 CSCD 北大核心 2022年第15期324-329,共6页 Computer Engineering and Applications
基金 科技部国家重点研发计划(2018YFC0309104)。
关键词 目标识别 检测定位 深度学习 医用辅助机器人 target recognition detection and location deep learning medical auxiliary robot
  • 相关文献

参考文献2

二级参考文献3

共引文献20

同被引文献4

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部