期刊文献+

焦化烟火智能识别系统优化研究

Study on Optimization of Coking Pyrotechnic Intelligent Identification System
下载PDF
导出
摘要 为提高识别焦炉烟火的准确率,设计了一种焦炉环保监控烟火自动检测系统。该系统基于AI机器深度学习视觉分析核心技术,可解决实际生产中发生的多种问题,适应性强、运行稳定、安装方便。对于异常烟火和火焰,可实时检测识别及预警,识别准确率超过90%。 In order to improve the accuracy of identifying coke oven fireworks, an automatic detection system for coke oven environmental monitoring fireworks is designed in the research. Based on the core technology of AI machine in-depth learning visual analysis, the system can solve a variety of problems in actual production, with strong compatibility, stable performance and convenient deployment. For abnormal fireworks and flames, it can realize real-time identification and alarm, and the recognition accuracy rate is more than 90%.
作者 杨化松 杨文灯 李辉 YANG Hua-song;YANG Wen-deng;LI Hui
出处 《安徽冶金科技职业学院学报》 2022年第2期52-55,共4页 Journal of Anhui Vocational College of Metallurgy and Technology
关键词 焦化烟火 深度学习 人工智能 环保 Coking fireworks deep learning artificial intelligence environmental protection
  • 相关文献

参考文献11

二级参考文献98

共引文献738

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部