期刊文献+

基于CNN-BiGRU的风机叶片故障诊断 被引量:6

Fault diagnosis of wind turbine blades based on CNN-BiGRU
下载PDF
导出
摘要 提出一种深度学习检测方法CNN-BiGRU.采用CNN自适应地学习变量之间存在的关联特征,利用BiGRU对时间序列的敏感性,对风机叶片故障分类.对某风电场的SCADA数据进行增强、切片、标准化等预处理,实验结果表明:CNN-BiGRU分类模型能有效对叶片结冰故障进行准确检测,在时间效率和检测准确率方面较其他深度学习模型效果更好. A detection method of deep learning named CNN-BiGRU was proposed.It used both the correlation characteristics between the adaptive learning variables of the CNN and the sensitivity to time-series of the BiGRU to classify the wind turbine blade faults.The SCADA data of a wind farm were pre-processed by enhancing,slicing and standardized processing.The results show that the CNN-BiGRU classification model can effectively detect the icing failure of blade,and it is better than other deep learning models in time efficiency and detection rate.
作者 王永平 张蕾 张晓琳 徐立 韩朋 张飞 WANG Yongping;ZHANG Lei;ZHANG Xiaolin;XU Li;HAN Peng;ZHANG Fei(Information Engineering School,Inner Mongolia University of Science and Technology,Baotou 014010,China;Department of Computer Science and Technology,Baotou Medical College of Inner Mongolia University of Science and Technology,Baotou 014010,China;School of Renewable and Clean Energy,North China Electric Power University,Beijing 102206,China)
出处 《内蒙古科技大学学报》 CAS 2022年第2期173-179,共7页 Journal of Inner Mongolia University of Science and Technology
基金 国家自然科学基金资助项目(61562065) 国家重点研发计划基金资助项目(2017YFE0109000) 内蒙古自治区自然科学基金资助项目(2019MS06036) 内蒙古科技大学创新基金项目(2014QDL046)。
关键词 风机叶片 故障检测 卷积神经网络 双向门控循环单元 wind turbine blades fault diagnosis convolutional neural network bidirectional gated recurrent unit
  • 相关文献

参考文献6

二级参考文献56

  • 1张广平.循环加载下金属薄膜的裂纹萌生行为及其微观机制的研究[J].机械强度,2004,26(z1):5-7. 被引量:7
  • 2朱忠奎,陈再良,王传洋.基于小波尺度图重分配的轴承瞬态特征检测与提取[J].数据采集与处理,2005,20(3):356-360. 被引量:8
  • 3唐新安,谢志明,王哲,吴金强.风力机齿轮箱故障诊断[J].噪声与振动控制,2007,27(1):120-124. 被引量:47
  • 4Kirikera G R, Schulz M J, Sundaresan M J. Multiple damage identification on a wind turbine blade using a structural neural system[J]. Proceedings of the SPIE-The International Society for Optical Engineering , 2007(6530): 65300T-1-12. 被引量:1
  • 5Marin J C, Barroso A, Paris F, et al. Study of fatigue damage in wind turbine blades[J]. Engineering Failure Analysis, 2009, 16(2): 656-668. 被引量:1
  • 6Anastassopoulos A A, Kouroussis D A, Nikolaidis V N. Structural integrity evaluation of wind turbine blades using pattem recognition analysis on acoustic emission data[C]//The 25th European Conference on Acoustic Emission Testing(EWGAE), Prague, Czech Reptember, 2002. 被引量:1
  • 7Dtmegan H L. Detection of fatigue crack growth by acoustic emission techniques[J]. Materials Evaluation, 1970, 28(10): 221-223. 被引量:1
  • 8Ziola S. Digital signal processing of modal emission signals[J]. Journal of Acoustic Emission, 1996, 14(3/4): 12-18. 被引量:1
  • 9Lekou D, Vionis P, Joosse P A, et al. Full-scale blade testing enhanced by acoustic emission monitoring[C]// Proceeding of European Wind Energy Conference, Madrid, Spain, 2003. 被引量:1
  • 10Paquette J, Van Dam J, Hughes S. Structural testing of 9m carbon fiber wind turbine research blades[C]//AIAA 2007 Wind Energy Symposium, Reno, USA, 2007. 被引量:1

共引文献133

同被引文献42

引证文献6

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部