期刊文献+

基于PSO-BP与D-S证据的液压泵多源故障信号融合诊断 被引量:5

Multi-Source Fault Signal Fusion Diagnosis of Hydraulic Pump Based on PSO-BP and D-S Evidence
原文传递
导出
摘要 为了解决用单一(振动,压力,温度)传感器对液压泵故障诊断时效率低的问题,在PSO-BP诊断层的基础上,利用D-S证据理论对多传感器信号进行融合处理,建立了一种基于PSO-BP诊断层与D-S决策层融合的液压泵故障诊断模型,并针对液压泵正常状态以及五中典型故障(漏油,柱塞磨损,配流盘磨损,松靴磨损,轴承磨损)开展测试分析。研究结果表明:利用本故障诊断模型能够更准确判断柱塞磨损程度与松靴磨损状态,柱塞磨损诊断效率为98.6%,松靴磨损诊断效率为98.4%,单一传感器诊断精度没有超多90%,通过D-S决策层把数据融合后精度都在98%以上,证明了PSO-BP诊断层与D-S决策层融合模型的可行性。本研究具有很高的液压泵故障诊断效率,尤其适用于一些微弱的故障信息,对提前侦测故障危险具有很好的价值。 In order to solve the problem of low efficiency in fault diagnosis of a hydraulic pump using a single(vibration,pressure or temperature)sensor,a fault diagnosis model of a hydraulic pump based on the fusion of PSO-BP diagnosis layer and D-S decision layer is established using D-S evidence theory.And diagnosis of the normal operation state and five typical faults(oil leakage,plunger wear,valve plate wear,loose shoe wear,bearing wear)is carried out.The results show that:the diagnosis efficiency of plunger wear is 98.6%,and the diagnosis efficiency of loose shoe wear is 98.4%.The diagnostic accuracy using a single sensor is improved from below 90%to over 98%after data fusion through the D-S decision layer.Therefore,the feasibility of the fusion model of PSO-BP diagnosis layer and D-S decision layer is validated.This study has a high efficiency of fault diagnosis of hydraulic pumps,especially with some weak fault information,and is useful in detecting fault danger in advance.
作者 崔四芳 宋慧啟 李峰 卢治功 CUI Sifang;SONG Huiqi;LI Feng;LU Zhigong(Department of Mechanical Manufacturing,Xinxiang Vocational and Technical College,Xinxiang Henan 453006,China;Department of Automotive Technology,Xinxiang Vocational and Technical College,Xinxiang Henan 453006,China;School of Mechanical Engineering,Henan Polytechnic University,Xinxiang Henan 453006,China;China Power Technology Information Industry Co.,Ltd.,Xinxiang Henan 453006,China)
出处 《机械设计与研究》 CSCD 北大核心 2022年第2期155-157,173,共4页 Machine Design And Research
基金 河南省科技厅科技攻关项目(212102210163) 河南省教育厅河南省职业教育教学改革项目(ZJC17040)。
关键词 柱塞泵 故障诊断 多源传感器 神经网络 数据融合 诊断输出 plunger pump fault diagnosis multi-source sensor neural network data fusion diagnostic output
  • 相关文献

参考文献12

二级参考文献101

共引文献164

同被引文献59

引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部