摘要
为了描述冲突中决策者主观判断的模糊性特点,基于冲突分析图模型研究框架,对简单偏好下的冲突决策共识理论进行系统性拓展,构建了模糊偏好下的冲突决策共识模型。将模糊理论中的梯形模糊数引入决策者的偏好设置中,对偏好信息进一步划分,给出模糊共识偏好和模糊非共识偏好的定义;为便于模糊偏好下冲突决策共识稳定解的计算和分析,定义了逻辑稳定性和矩阵稳定性表达;利用构建的冲突决策共识模型分析湄公河流域水资源冲突事件,从而得到最优解决方案。结果表明,该模型能够准确有效地解决模糊偏好下的冲突决策共识问题。
In order to describe the fuzziness of the decision-makers subjective judgments in conflict,the conflict decision consensus theory under simple preference is systematically expanded to construct a conflict decision consensus model under fuzzy preference based on the research framework of the graph model for conflict resolution.First,the trapezoidal fuzzy number in fuzzy theory is introduced into the preference setting of decision makers,and the preference information is further divided into the fuzzy consensus preference and fuzzy non-consensus preference.Then,in order to facilitate the calculation and analysis of stable solution of conflict decision consensus under fuzzy preference,the logical stability and matrix stability expression are defined.Finally,the conflict decision consensus model constructed is used to analyze the water resources conflict events in the Mekong River Basin,so as to obtain the optimal solution.The results show that the model can accurately and effectively solve the conflict decision consensus problem under fuzzy preference.
作者
张瑾木子
徐海燕
陈璐
ZHANG Jinmuzi;XU Haiyan;CHEN Lu(College of Economics and Management,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China)
出处
《水利经济》
2022年第4期61-68,93,94,共10页
Journal of Economics of Water Resources
基金
国家自然科学基金(71971115)
南京航空航天大学基本科研业务费专项(NG2020004)。
关键词
水资源冲突
模糊偏好
梯形模糊数
冲突分析图模型
决策共识
湄公河流域
water conflict
fuzzy preference
trapezoidal fuzzy number
graph model for conflict resolution
decision consensus
the Mekong River Basin