期刊文献+

融合动态兴趣偏好与特征信息的序列推荐 被引量:2

Sequence recommendation of fusing dynamic interest preference and feature information
下载PDF
导出
摘要 传统的序列推荐通常忽略用户和项目特征信息的重要性,且无法有效对动态的兴趣偏好进行建模.因此,提出融合动态兴趣与特征信息的序列推荐算法.该算法通过对目标项目进行动态兴趣建模,克服兴趣转移带来的影响;同时融合用户和项目特征信息模拟真实的用户行为以提高推荐的性能.首先,针对动态兴趣建模,采用辅助函数应用下一个行为监督上一个隐藏兴趣状态的学习,并采用带注意力机制的门控循环单元为不同的兴趣状态对目标影响程度赋予不同的权重;然后,针对用户和项目特征信息特征融合,采用平凡注意力机制为影响目标项目的特征赋予不同的权重,并通过多头注意力机制进行深层次的特征提取;最后,融合用户动态兴趣表示和用户项目特征表示输入到多层感知机.在Yelp和MovieLens-1M数据集上进行仿真实验,结果表明提出模型的性能比一些基线模型有较好的提升. Traditional sequence recommendation usually ignores the importance of user and item feature information,and cannot effectively model dynamic interest preferences.Therefore,this paper proposes a sequence recommendation that integrates dynamic interest and feature information.The algorithm overcomes the impact of interest transfer by modeling the target item's dynamic interest;at the same time,it integrates user and item feature information to simulate real user behavior to improve recommended performance.Firstly,for dynamic interest modeling,an auxiliary function is used to apply the next behavior to supervise the learning of the previous hidden interest state,and a gated cycle unit with attention mechanism is used to assign different weights to the degree of influence of different interest states on the target.Then,aiming at the fusion of user and item feature information,the vanilla attention mechanism is used to assign different weights to the features that affect the target item,and the multi-head attention mechanism is used for in-depth feature extraction.Finally,the user's dynamic interest representation and user item feature representation are input to the multi-layer perceptron.Simulation experiments are carried out on the datasets of Yelp and MovieLens-1M.The results show that the performance of the proposed model outperforms some baseline models.
作者 普洪飞 邵剑飞 张小为 魏榕剑 PU Hong-fei;SHAO Jian-fei;ZHANG Xiao-wei;WEI Rong-jian(Faculty of Information Engineering and Automation,Kunming University of Science and Technoloy,Kunming 650500,Yunnan,China)
出处 《云南大学学报(自然科学版)》 CAS CSCD 北大核心 2022年第4期708-717,共10页 Journal of Yunnan University(Natural Sciences Edition)
基金 国家自然科学基金(61732005)。
关键词 动态兴趣偏好建模 用户和项目特征提取 平凡注意力机制 多头注意力机制 序列推荐 dynamic interest modeling user and item feature extraction vanilla attention mechanism multihead attention mechanism sequence recommendation
  • 相关文献

参考文献6

二级参考文献19

共引文献43

同被引文献17

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部