期刊文献+

Thermal Transport through Solid-Liquid Interface:Effect of the Interfacial Coupling and Nanostructured Surfaces 被引量:2

原文传递
导出
摘要 The solid-liquid interfacial thermal transport depends on the physical properties of the interfaces,which have been studied extensively in open literature.However,the fundamental understanding on the mechanism of the solid-liquid interfacial thermal transport is far from clear.In the present paper,heat transfer through solid-liquid interfaces is studied based on the non-equilibrium molecular dynamics simulations.It is shown that the interfacial heat transfer can be enhanced by increasing interfacial coupling strength or introducing the nanostructured surfaces.The underlying mechanism of the interfacial thermal transport is analyzed based on the calculation results of the heat flux distribution,potential mean force,and the vibrational density of states at the interfacial region.It is found that the interfacial thermal transport is dominated by the kinetic and virial contributions in the interface region.The enhancement of the interfacial heat transfer can be attributed to the fluid adsorption on the solid surface under a strong interfacial interaction or by the nanostructured solid surfaces,which reduce the mismatch of the vibrational density of states at the solid-liquid interface region.
出处 《Journal of Thermal Science》 SCIE EI CAS CSCD 2022年第4期1167-1179,共13页 热科学学报(英文版)
基金 Beijing Nova Program of Science and Technology(No.Z191100001119033)。
  • 相关文献

参考文献5

二级参考文献27

  • 1QIAN ZhongDong1, HU XiaoQing1, HUAI WenXin1 & XUE WanYun1 State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China.Numerical simulation of sediment erosion by submerged jets using an Eulerian model[J].Science China(Technological Sciences),2010,53(12):3324-3330. 被引量:6
  • 2Cahill D G, Ford W K, Goodson K E, Majumdar A, Mariset H J, Merlin R, Phillpot S R 2010 J. 被引量:1
  • 3Swartz E T, Pohl R O 1989 Rev. Mod. Phys. 61 605. 被引量:1
  • 4Barrat J L, Chiaruttini F 2003 Mol. Phys. 101 1605. 被引量:1
  • 5Xue L, Keblinski P, Phillipot S R, Choi S U S, Eastman J A 2003 J. Chem. Phys. 118 337. 被引量:1
  • 6Ge Z B, Cahill D G, Braun P V 2006 Phys. Rev. Lett. 96 186101. 被引量:1
  • 7Gu C Y, Di Q F, Shi L Y, Wu F, Wang W C, Yu Z B 2008 Acta Phys. Sin. 57 3071 (in Chinese). 被引量:1
  • 8Ma H M, Hong L, Yin Y, Xu J, Ye H 2011 Acta Phys. Sin. 60 098105 (in Chinese). 被引量:1
  • 9Gong M G, Xu X L, Cao Z L, Liu Y Y, Zhu H M 2009 Acta Phys. Sin. 58 1885 (in Chinese). 被引量:1
  • 10Murad S, Puri I K 2008 Appl. Phys. Lett. 92 133105. 被引量:1

共引文献16

同被引文献11

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部