期刊文献+

面向数据处理与管理的云平台系统架构设计 被引量:1

Design of Cloud Platform System Architecture for Data Processing and Information Management
下载PDF
导出
摘要 随着云原生技术在云计算领域的广泛应用,应用云原生技术更好地支撑业务能力成为了开发者们关注的重点。大数据环境下,基于海量数据和信息,针对数据处理与信息管理业务,对云平台系统进行了研究工作,梳理了系统的功能组成,部署形式,从体系架构、功能结构、技术设计等方面设计了一种面向数据处理与信息管理的云平台,给出了框架、方法和技术,实现系统资源的统一管理、监控、共享和调度,实现应用的统一部署和高可用性。从整体角度分析设计了技术体系架构。通过应用容器云技术,该平台能够自动部署集群、快速扩容计算空间,用于应对大型数据处理面临的计算量巨大、优化困难等问题。该系统架构自动化程度更高、可用性更强,应用运行结果更具稳定性,能有效满足信息在存储、大规模计算、深度数据挖掘等方面的需求,从而达到通过云平台技术强力支撑数据处理与信息管理业务以及提升数据处理能力的目的。 With the wide application of cloud native technology in the field of cloud computing,the application of cloud native technology to better support business capabilities has become the focus of developers.In the big data environment,based on massive data and information,aiming at data processing and information management business,we study the cloud platform system,combs the functional composition and deployment form of the system,designs a cloud platform for data processing and information management from the aspects of architecture,functional structure and technical design,and gives the framework,methods and technologies,so as to realize the unified management,monitoring,sharing and scheduling of system resources,and realize the unified deployment and high availability of applications.The technical architecture is analyzed and designed from the overall perspective.Through the application of container cloud technology,the platform can automatically deploy clusters and rapidly expand computing space to deal with the huge amount of computing and optimization difficulties faced by large-scale data processing.The system architecture has higher automation,stronger availability and more stable application operation results.It can effectively meet the needs of information storage,large-scale computing and deep data mining,so as to strongly support data processing and information management business and improve data processing capacity through cloud platform technology.
作者 汪朋 姜红玉 封雷 WANG Peng;JIANG Hong-yu;FENG Lei(The 15th Research Institute of China Electonics Group Corporation,Beijing 100083,China)
出处 《计算机技术与发展》 2022年第7期122-127,共6页 Computer Technology and Development
基金 中国电子科技集团重点科研项目(JY201802850)。
关键词 云原生 云平台 容器技术 云计算 大数据 cloud native cloud platform container technology cloud computing big data
  • 相关文献

参考文献12

二级参考文献55

  • 1卞锋,江漫清,桑永英.虚拟现实及其应用进展[J].计算机仿真,2007,24(6):1-4. 被引量:58
  • 2王庆波,金滓,何乐,等.虚拟化与云计算[M].北京:电子工业出版社,2009. 被引量:80
  • 3Ghemawat S, Gobioff H, Leung S T. The google file system//Proceedings of the 19th ACM Symposium on Operating Systems Principles. Sagamore, 2003:29-43. 被引量:1
  • 4Caulfield A M, Grupp L M, Swanson S. Gordon: Using flash memory to build fast, power-efficient clusters for dataintensive applications//Proceedings of the International Con ference on Architectural Support for Programming Languages and Operating Systems. Wangington, 2008:217-228. 被引量:1
  • 5Andersen D G, Franklin J, Kaminsky M. FAWN: A fast ar ray of wimpy nodes//Proceedings of the 22nd ACM Symposi um on Operating Systems Principles. Big Sky, 2009:1-14. 被引量:1
  • 6Outerhout J, Agrawal P, Erickson D et al. The case for RAMClouds: Scalable high-performance storage entirely in DRAM. Operating Systems Review, 2009, 43(4) 92-105. 被引量:1
  • 7Schmidt K, Ou Y, Harder T. The promise of solid state disks: Increasing efficiency and reducing cost of DBMS processing//Proceedings of the Canadian Conference on Comput er Science & Software Engineering. Montreal, 2009. 35-41. 被引量:1
  • 8Polte M, Simsa J, Gibson G. Comparing performance of solid state devices and mechanical disks//Proceedings of the 3rd Petascale Data Storage Workshop Held in Conjunction with Supercomputing. Pittsburgh, 2008:1-7. 被引量:1
  • 9Narayanan D, Thereska Eno, Donnelly A et al. Migrating server storage to SSDs: Analysis of tradeoffs//Proceedings of the 4th ACM European Conference on Computer Systems (EuroSys'09). Nuremberg, 2009. 145-158. 被引量:1
  • 10Anderson E, Spence S, Swaminathan R et al. Quickly finding near-optimal storage designs. ACM Transactions on Computer System, 2005, 23(4) : 337- 374. 被引量:1

共引文献113

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部