摘要
良好的色散性和变浅性是Boussinesq水波数值模型能够精确模拟水波问题的重要前提,针对一组最高空间导数为2的三维Boussinesq型水波方程在色散性和变浅性的不足,重新引入带有不同色散参数和变浅参数的计算速度表达式,得到了新的三维Boussinesq型方程。对该方程进行理论分析,以相关解析解为参考,分析了新参数下方程的相速度、和差频和变浅梯度等性能。理论分析结果表明:方程的综合性能有了较大改善,验证了改进的理论有效性。为验证改进方程的数值有效性,建立了基于混合4阶Adams-Bashforth-Moulton格式的时间差分数值模型。数值模拟了波浪在潜堤上的传播变形过程,将计算波面位移与文献的试验数据进行了比较,结果表明,与改进前相比,改进后计算结果与试验结果的吻合程度更高。
High accuracy in both dispersion and shoaling property of a Boussinesq-type model is the fundamental basis for accurate water wave simulations.To amend the deficiency of dispersion and shoaling of a set of three-dimensional Boussinesq-type equations for water waves with the highest spatial derivative of 2,the computational velocity expressions with different dispersion parameters and shoaling parameters were introduced,and a new Boussinesq-type model was obtained.The phase celerity,super-and sub-harmonics and shoaling gradient of the present model were analyzed.The theoretical analysis results show that comprehensive performance of the model has been greatly improved,which verifies the effectiveness of the improved method.Furthermore,to verify the validity of the numerical model,the numerical model was solved by finite difference method with a composite fourth-order Adams-Bashforth-Moulton scheme for time integration.Numerical simulations were carried out upon regular wave propagation and deformation process over a submerged breakwater,the simulated surface elevations were compared with the related experimental data measured by reference.The results show that the improved numerical model is in better agreement with the measurements than the model with original parameters.
作者
刘忠波
刘泽
王铖龙
王彦
房克照
LIU Zhong-bo;LIU Ze;WANG Cheng-long;WANG Yan;FANG Ke-zhao(Transportation Engineering College, Dalian Maritime University, Dalian 116026, China;State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, China)
出处
《科学技术与工程》
北大核心
2022年第17期6888-6893,共6页
Science Technology and Engineering
基金
国家自然科学基金(51779022,52171247,52071057)。