摘要
高速列车行驶中所产生的蛇行运动会严重影响到列车的行驶安全,所以对蛇行运动进行预测可以做到提前预警。目前对于蛇行运动的研究主要为对蛇行失稳的预测,但列车运行过程中会出现正常到蛇行失稳的小幅蛇行中间状态,对小幅蛇行状态进行预测可以提前对蛇行失稳进行预警。为此,以高速列车转向架横向加速度信号为标准,针对高速列车蛇行运动数据的极端不平衡情形,提出了一种基于1D-CNN和CGAN的非平衡数据的预测方法。该方法首先利用CGAN的对抗性学习机制,通过生成器和鉴别器之间的博弈来优化更新参数。然后,将训练完备的CGAN模型用于生成样本,将增强后的数据送入1D-CNN分类器,并输出预测结果。在高速列车实际运行数据上进行实验,结果表明CGAN可以拟合高速列车蛇行故障运动的数据分布并增强数据集,且基于提出的方法预测精度为97.5%,大幅优于对比方法。因此基于CGAN-1DCNN的小幅蛇行预测方法可以在数据不平衡下对小幅蛇行的预测,实现对蛇行失稳的提前预警。
The hunting motion generated by high-speed trains can seriously affect the safety of trains, so predicting hunting motion can provide early warning. The current research on hunting motion is mainly about the prediction of hunting instability, but there is a small-amplitude hunting intermediate state between normal and hunting instability during train operation, and the prediction of the small-amplitude hunting state can provide early warning of hunting instability. To this end, a prediction method for imbalanced data based on a one-dimensional convolutional neural network 1 D-CNN and a conditional generative adversarial network CGAN is proposed for the extreme imbalanced case of high-speed train hunting motion data using the bogie lateral acceleration signal as the standard. The adversarial learning mechanism of CGAN method first utilised to optimise the update parameters through a game between the generator and the discriminator. The well-trained CGAN model is then used to generate samples, feed the enhanced data into a 1 D-CNN classifier, and output the prediction results. Experiments are conducted on actual high-speed train operation data, and the results show that CGAN can fit the data distribution of high-speed train hunting fault motion and enhance the dataset, and the prediction accuracy based on the proposed method is 97.5%, which is substantially better than the comparison method. Thus the CGAN-1 DCNN-based minor hunting prediction method can predict minor hunting under data imbalance and achieve early warning of hunting instability.
作者
宁云志
宁静
李艳萍
陈春俊
Ning Yunzhi;Ning Jing;Li Yanping;Chen Chunjun(School of Mechanical Engineering,Southwest Jiaotong University,Chengdu 610031,China)
出处
《电子测量技术》
北大核心
2022年第6期149-154,共6页
Electronic Measurement Technology
基金
国家自然科学基金(51975486,51975487)项目资助。