摘要
大数据证据是对海量数据进行筛选、汇总、提炼、形成结论并在审判中使用的证据。大数据证据不同于“运用大数据技术分析收集的证据”,后者并未对传统证据规则形成明显挑战,而前者将导致大数据证据与传统证据规则产生明显冲突,进而引发大数据证据在法庭适用中的三重困境。第一重困境是大数据证据种类与法定证据种类的不适应,这一困境应通过不同阶段的“三步走”策略逐渐解决。第一阶段,应将大数据证据作为一种鉴定意见;第二阶段,应将大数据证据作为独立的证据种类;第三阶段,应放弃将证据种类作为证据门槛的做法。第二重困境是因可靠性质疑而导致的相关性困境,这一困境产生的原因是大数据的黑箱化运行以及大数据技术的复杂性。对此,最为简单直接的办法便是公开算法的历史准确率。其中,算法历史准确率公布的主体应是算法开发者(或改进者),因为开发大数据算法的一个组成部分便是计算(改进)正在进行的算法的准确性。同时,为了保障算法开发者(或改进者)公布的历史准确率具有可信度,还应由政府部门牵头,依托具有相应专业人才、技术支撑和监管能力的行业自律组织负责算法的监管。除此之外,必要时还应寻求鉴定人、专家辅助人进行解释,使一般人能够理解基于“数据经验”产生的关联,从而进一步对大数据证据的可靠性进行判断。第三重困境是因对隐私权的侵犯和“证据偏在”的影响而导致的可采性困境,该困境应通过构建“原则+制度+技术”的融合规制路径来加以解决。从原则角度出发,大数据证据的应用原则包括数据有限使用原则、数据主体“弱同意”原则和数据甄别原则;从制度的角度出发,一方面,应构建大数据技术风险评估系统,对大数据技术的应用进行风险等级评定;另一方面,应引入大数据技术应用的审查
Big data evidence is the evidence used in the trial to screen,summarize,refine,and form a conclusion on the massive data.Big data evidence is different from evidence analyzed or collected by big data technology.The latter does not pose a significant challenge to the traditional evidence rules,while the former leads to the maladjustment between big data evidence and traditional evidence rules,which leads to the triple dilemma of using big data evidence in court.The first dilemma is the inadaptability between the types of big data evidence and the types of legal evidence,which should be solved gradually through the three-step strategy in different periods.In the first stage,big data evidence should be regarded as an expert opinion.In the second stage,big data evidence should be regarded as an independent type of evidence.In the third stage,the practice of taking the type of evidence as the threshold of evidence review should be abandoned.The second dilemma is the relevance dilemma caused by reliability,which is due to the black box operation of big data and the complexity of big data technology.The simplest and direct solution is to disclose the historical accuracy of the algorithm.Among them,the main body of publishing the historical accuracy of the algorithm should be the algorithm developer(or improver),because an integral part of developing big data algorithm is to calculate(improve)the accuracy of the algorithm in progress.At the same time,in order to ensure the credibility of the historical accuracy published by algorithm developers(or improvers),government departments should also take the lead and rely on industry self-discipline organizations with corresponding professional talents,technical support and supervision ability to supervise the algorithm.In addition,if necessary,appraisers and expert assistants should be sought to explain,so that ordinary people can understand the relevance based on“data experience”,so as to further judge the reliability of big data evidence.The third dilemma is the admissib
作者
郑飞
马国洋
ZHENG Fei;MA Guoyang(Law School,Beijing Jiaotong University,Beijing 100044,P.R.China;Collaborative Innovation Center of Judicial Civilization,China University of Political Science and Law,Beijing 100088,P.R.China)
出处
《重庆大学学报(社会科学版)》
CSSCI
北大核心
2022年第3期207-218,共12页
Journal of Chongqing University(Social Science Edition)
基金
国家社会科学基金重点项目“大数据侦查的程序控制与证据适用研究”(2019AZD024)
北京市社会科学基金青年项目“北京市刑事证据保管制度研究——基于冤假错案防治的视角”(16FXC029)。
关键词
大数据
大数据证据
证据适用
事实认定
三重困境
big data
big data evidence
evidence application
fact finding
triple dilemma