期刊文献+

Dirichlet process and its developments: a survey

原文传递
导出
摘要 The core of the nonparametric/semiparametric Bayesian analysis is to relax the particular parametric assumptions on the distributions of interest to be unknown and random,and assign them a prior.Selecting a suitable prior therefore is especially critical in the nonparametric Bayesian fitting.As the distribution of distribution,Dirichlet process(DP)is the most appreciated nonparametric prior due to its nice theoretical proprieties,modeling flexibility and computational feasibility.In this paper,we review and summarize some developments of DP during the past decades.Our focus is mainly concentrated upon its theoretical properties,various extensions,statistical modeling and applications to the latent variable models.
出处 《Frontiers of Mathematics in China》 SCIE CSCD 2022年第1期79-115,共37页 中国高等学校学术文摘·数学(英文)
基金 supported in part by the National Natural Science Foundation of China(Grant No.11471161) the Technological Innovation Item in Jiangsu Province(No.BK2008156).
  • 相关文献

参考文献3

二级参考文献102

  • 1Bollen K A. Structural Equations with Latent Variables[M]. New York: John Wiley & Sons, Inc., 1989. 被引量:1
  • 2Lee S Y. Structural equation modeling: A Bayesian perspective[M]. New York: Springer- Verlag, 2007. 被引量:1
  • 3Skrondal A, Rabe-Hesketh S. Generalized latent variable modeling: Multilevel, Longitudinal, and structural equation models[M]. London: Chapman and Hall/CRC, 2004. 被引量:1
  • 4JSreskog K G, SSrbom D. LISREL 8: Structural Equation Modeling with the SIMPLIS Command Language[M]. London: Scientific Software International, 2002. 被引量:1
  • 5Bentler P M, Wu Eric. EQS6: Structural Equations Program Manual[M]. Encino, CA: Multivariate Software, 2004. 被引量:1
  • 6Mfithen B. LISCOMP: Analysis of Linear Structural Equation with a Comprehensive Mea- surement Model[M]. Chicago: Scientific Software, 1987. 被引量:1
  • 7MacDonald I L, Zucchini W. Hidden Markov Models and Other Models for Discrete-Valued Time Series[M]. London: Chapman & Hall, 1997. 被引量:1
  • 8Cappe O, Moulines E, Ryden T. Inference in Hidden Markov Models[M]. New York: Springer, 2005. 被引量:1
  • 9Rabiner L R. A tutorial on hidden Markov models and selected applications in speech recog- nition[J]. Proceedings of the IEEE, 1989, 77: 257-284. 被引量:1
  • 10Fredkin D R, Rice J A. Maximum likelihood estimation and identification directly from single-channel recordings [J]. Proceedings of the Royal Society of London, Series B, 1992, 249: 125-132. 被引量:1

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部