期刊文献+

深度神经网络图像目标检测算法综述 被引量:18

Survey on Deep Neural Network Image Target Detection Algorithms
下载PDF
导出
摘要 随着深度卷积神经网络优异的特征提取能力被发掘,目标检测的进程开始以一种势不可挡的姿态向前推进,同时,和深度学习结合的目标检测技术取得了显著的成果,在自动驾驶、智能化交通系统、无人机场景、军事目标检测和医学导航等现实场景中得到了广泛的应用.本文回顾了传统目标检测算法的缺点,介绍了常用的检测数据集以及性能评估指标,综述了基于深度学习的目标检测经典算法,阐述了当前目标检测的以及存在的困难与挑战,对目标检测的未来可行的研究方向进行了展望. With the exploration of the excellent feature extraction capabilities of deep convolutional neural networks,target detection has made a great stride. At the same time, the target detection technology combined with deep learning has achieved remarkable results. It has been widely used in such real scenarios as automatic driving, intelligent transportation systems, drone scenarios, military target detection, and medical navigation. The study reviews the shortcomings of traditional target detection algorithms and introduces commonly used detection data sets and performance evaluation indicators. It also summarizes classic target detection algorithms based on deep learning and elaborates on current target detection and existing difficulties and challenges. The feasible research directions in the future are prospected.
作者 付苗苗 邓淼磊 张德贤 FU Miao-Miao;DENG Miao-Lei;ZHANG De-Xian(College of Information Science and Engineering,Henan University of Technology,Zhengzhou 450001,China;Henan International Joint Laboratory of Grain Information Processing,Zhengzhou 450001,China)
出处 《计算机系统应用》 2022年第7期35-45,共11页 Computer Systems & Applications
关键词 卷积神经网络 特征提取 深度学习 目标检测 计算机视觉 convolutional neural network(CNN) feature extraction deep learning object detection computer vision
  • 相关文献

参考文献18

二级参考文献67

共引文献635

同被引文献175

引证文献18

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部