期刊文献+

基于空洞卷积神经网络的姿态估计算法 被引量:2

Attitude estimation algorithm based on hole CNN
下载PDF
导出
摘要 针对姿态估计中存在微机电系统(MEMS)陀螺仪漂移和误差发散的问题,提出了一种基于空洞卷积神经网络(CNN)补偿微惯性测量单元(MIMU)误差的姿态估计算法。该算法利用空洞卷积神经网络学习MIMU提供的加速度和角速度数据来补偿陀螺仪的误差,使用基于四元数的四阶龙格库塔法求解误差补偿后陀螺仪的角度。将修正后的陀螺仪数据作为预测量;加速度计和磁力计数据作为观测量,通过扩展卡尔曼滤波实现多传感器融合准确估计姿态。利用MPU9250模块进行算法对比实验,结果表明:本算法可有效降低陀螺仪随机漂移,稳定输出高精度姿态。 Aiming at the problem of micro-electro-mechanical system(MEMS)gyroscope drift and error divergence in attitude estimation,an attitude estimation algorithm based on cavity convolution neural network(CNN)is proposed to compensate the error of micro inertial measurement unit(MIMU).The algorithm uses the hole CNN to learn the acceleration and angular velocity data provided by MIMU to compensate the gyroscope error,and uses the four elements four-order Runge-Kutta method to solve the angle of gyroscope after error compensation.The modified gyroscope data is used as the predictor,the accelerometer and magnetometer data are used as the observation measurements,and the multi-sensor fusion is realized through extended Kalman filtering(EKF)to accurately estimate the attitude.MPU9250 module is used for algorithm comparison experiment.The results show that the algorithm can effectively reduce the random drift of the gyroscope and stabilize the high precision attitude.
作者 李哲 吴珂 黄琼丹 LI Zhe;WU Ke;HUANG Qiongdan(School of Electronic Engineering,Xi’an University of Posts and Telecommunications,Xi’an 710121,China;School of Communication and Information Engineering,Xi’an University of Posts and Telecommunications,Xi’an 710121,China)
出处 《传感器与微系统》 CSCD 北大核心 2022年第7期139-142,151,共5页 Transducer and Microsystem Technologies
基金 陕西省重点研发计划资助项目(2018GY-150)。
关键词 姿态估计 卷积神经网络 微惯性测量单元 扩展卡尔曼滤波 四元数 attitude estimation convolutional neural network(CNN) micro inertial measurement unit(MIMU) extended Kalman filtering(EKF) quaternion
  • 相关文献

参考文献10

二级参考文献92

  • 1刘巧光,杨海军,郭美凤,滕云鹤,章燕申.捷联惯性导航系统的姿态算法优化设计[J].中国惯性技术学报,1999,7(2):2-6. 被引量:21
  • 2刘刚,郭美凤,张嵘,彭卓,罗寿红.MIMU精度对GNSS/MINS组合导航系统性能影响仿真分析[J].中国惯性技术学报,2013,21(6):786-791. 被引量:3
  • 3丁军.基于微惯性传感器的姿态算法研究[D].上海:上海交通大学,2013. 被引量:1
  • 4Jung Keun Lee,Edward J Park, Stephen N. Robinovitch. Estimation of Attitude and External Acceleration Using Inertial Sensor Measurement During Various Dynamic Conditions[J]. IEEE Transactions on Instru-mentation and Measurement,2012,61 (8):2262-2273. 被引量:1
  • 5Ruan Xiaogang,Song Keke. An Adaptive Extended Kalman Filter for Attitude Estimation of Self-Balancing Two-Wheeled Robot [ C ]//International Conference on Electric Information and Control Enginee( ICEICE ) ,2011:4760-4763. 被引量:1
  • 6Lou Lu, Xu Xin. An Approach to Improving Attitude Estimation Using Sensor Fusion for Robot Navigation [ C ]//Procedia Engineering,2011,15:5601-5605. 被引量:1
  • 7Zhao Lin, Nie Qi, Guo Qiufen. Unscented Kalman Filtering for SINS Attitude Estimation [ C ]//IEEE International Conference on Control and Automation,2007:228-232. 被引量:1
  • 8Pan Yue. Attitude Estimation of Miniature Unmanned Helicopter Using Unscented Kalman Filter[ C ]//International Conference on Transportation,Mechanical, and Electrical Engineering ( TMEE ). 2011 :1548-1551. 被引量:1
  • 9Tang Xiaojun, Wei Jianli, Chen Kai. Square-Root Adaptive Cubature Kalman Filter with Application to Spacecraft Attitude Es- timation[ C ]//International Conference on Information Fusion. 2012 : 1406-1412. 被引量:1
  • 10Madgwick S. An Efficient Orientation Filter for Inertial and Inertial/Magnetic Sensor Arrays[ R]. Report x-io and University of Bristol(UK) ,2010. 被引量:1

共引文献174

同被引文献15

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部