期刊文献+

月表陨坑检测轻量化深度学习方法 被引量:1

Lightweight Deep Learning Method for Lunar Surface Crater Detection
下载PDF
导出
摘要 针对目前基于深度学习的陨坑检测方法存在的模型参数量大和检测速度慢的问题,提出了一种轻量化的深度学习陨坑检测方法。首先,采用通道剪枝方法删减卷积神经网络中冗余的卷积核,得到结构紧凑高效的陨坑检测模型。然后,使用轻量化的深度可分离卷积操作替换基础陨坑检测模型中的标准卷积操作,进一步降低了模型的复杂度。仿真实验结果表明,所提出的轻量化陨坑检测模型能够保证较高的像素预测精度,并且能够适应亮度、图像噪声等干扰因素的影响。同时,与轻量化处理前的模型相比,参数量减少了99.2%,检测速度提升了94%。 A lightweight deep learning crater detection method is proposed to address the problems of large number of model parameters and slow detection of the current deep learning crater detection methods.Firstly,the channel pruning method is used to delete the redundant convolution kernel in convolution neural network to obtain a compact and efficient crater detection model.Then,the lightweight depthwise separable convolution operation is used to replace the standard convolution operation in the basic crater detection model,which further reduces the complexity of the model.The simulation results show that the proposed lightweight crater detection model can ensure high pixel prediction accuracy,and can adapt to the influence of interference factors such as brightness and image noise.Moreover,compared with the model before lightweight processing,the amount of parameters is reduced by 99.2%and the detection speed is improved by 94%.
作者 高艾 周永军 王俊伟 兀泽朝 GAO Ai;ZHOU Yongjun;WANG Junwei;WU Zezhao(School of Aerospace Engineering,Beijing Institute of Technology,Beijing 100081,China;Key Laboratory of Autonomous Navigation and Control for Deep Space Exploration,Ministry of Industry and Information Technology,Beijing 100081,China;Key Laboratory of Dynamics and Control of Flight Vehicle,Ministry of Education,Beijing 100081,China)
出处 《宇航学报》 EI CAS CSCD 北大核心 2022年第6期830-838,共9页 Journal of Astronautics
基金 国家自然科学基金(11872110)。
关键词 月球着陆探测 陨坑检测 深度学习 卷积神经网络 轻量化处理 Lunar landing exploration Crater detection Deep learning Convolutional neural networks Lightweight processing
  • 相关文献

参考文献11

二级参考文献91

  • 1李革非,刘勇,郝大功,马传令.定时定点月面着陆全程轨道控制设计[J].宇航学报,2020,41(1):10-18. 被引量:4
  • 2XI XiaoNing1, HUANG WenDe2 & WANG Wei2,3 1 College of Mechatronics Engineering and Automation, National University of Defense Technology, Changsha 410073, China,2 College of Aerospace and Material Engineering, National University of Defense Technology, Changsha 410073, China,3 School of Surveying and Spatial Information System, University of New South Wales, Sydney, NSW 2052, Australia.Review on abort trajectory for manned lunar landing mission[J].Science China(Technological Sciences),2010,53(10):2691-2698. 被引量:3
  • 3CUI PingYuan1,QIAO Dong1,CUI HuTao2 & LUAN EnJie3 1 School of Aerospace Engineering,Beijing Institute of Technology,Beijing 100081,China,2 Harbin Institute of Technology,Harbin 150001,China,3 National Defense Science and Industry Bureau,Beijing 100048,China.Target selection and transfer trajectories design for exploring asteroid mission[J].Science China(Technological Sciences),2010,53(4):1150-1158. 被引量:15
  • 4陈俊勇.月球大地测量学的进展[J].大地测量与地球动力学,2004,24(3):1-6. 被引量:16
  • 5Cheng Y,Goguen J,Johnson AE,et al.The mars exploration rovers descent image motion estimation system[J].IEEE Intelligent Systems,2004,19(3):13-21. 被引量:1
  • 6Junichiro K,Tatsuaki H,Takashi M,et al.Autonomous optical guidance and navigation strategy around a small body[J].AIAA Journal of Guidance,Control,and Dynamics,1997,20(5):1010-1017. 被引量:1
  • 7Johnson A E,Cheng Y,Matthies L H.Machine vision for autanomons small body navigation[C]//Proc.of IEEE Aerospace Conference.Montana,USA:IEEE Press,2000:18-25. 被引量:1
  • 8Andrew J.Autonomous Landing and Hazard Avoidance Technology[OL].Exploration Systems Research and Technology.Http://www-robotics,jpl.Nasa.Guv/tasks/show Task,cfm? FnseAction =showTasd&TaskID = 84&tdaID = 999986. 被引量:1
  • 9Burl M C,StoughT,Colwell W,et al.Automated detection of craters and other geological features[C]//6th International Symposium on Artificial Intelligence,Robotics and Automation in Space.Montreal,Canada:[s.n.],2001. 被引量:1
  • 10Michael G G.Coordinate registration by automated crater reconguition[J].Planetary and Space Science,2003,51:563-568. 被引量:1

共引文献64

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部