期刊文献+

Hydrodynamics study of dolphin’s self-yaw motion realized by spanwise flexibility of caudal fin

原文传递
导出
摘要 The hydrodynamic performance of the virtual underwater vehicle under self-yaw is investigated numerically in this paper,we aim to explore the fluid laws behind this plane motion achieved by the bionic flexibility,especially the spanwise flexibility of the caudal fin.The kinematics of the chordwise flexible body and the spanwise flexible caudal fin are explored through dynamic mesh technology and user-defined functions(UDF).The 3-D Navier-Stokes equations are applied to simulate the viscid fluid surrounding the bionic dolphin.The study focuses on quantitative problems about the fluid dynamics behind the specific motion law,including speed of movement,energy loss and working efficiency.The current results show that the self-yaw can be composed of two motions,autonomous propulsion and active steering.In addition,the degree of the flexible caudal fin can produce different yaw effects.The chordwise phase differenceФis dominant in the propulsion function,while the spanwise phase differenceδhas a more noticeable effect on the steering function.The pressure distribution on the surface of the dolphin and the wake vortex generated in the flow field reasonably reveal the evolution of self-yaw.It properly turns out that the dolphin can combine the spanwise flexible caudal fin and the chordwise flexible body to achieve self-yaw motion.
出处 《Journal of Ocean Engineering and Science》 SCIE 2022年第3期213-224,共12页 海洋工程与科学(英文)
基金 This work was supported by National Natural Science Founda-tion of China[grant number 51875101] State Key Laboratory of Robotics and System(HIT)[grant number SKLRS-2018-KF-11].
  • 相关文献

参考文献1

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部