期刊文献+

超视距雷达中射频干扰仿真与距离-多普勒图检测方法 被引量:2

Radio Frequency Interference Simulation and Detection in the Range-Doppler Map for Over-the-Horizon Radar
下载PDF
导出
摘要 超视距雷达存在射频干扰(Radio Frequency Interference,RFI)问题,尤以遍布全距离-多普勒(Range-Doppler,RD)图的宽带RFI影响最大.本文给出宽带RFI的仿真方法和基于RD图的RFI检测方法.首先,基于自回归滑动平均模型仿真宽带RFI,模拟实测RFI的时频特性和RD图形态.其次,基于图像分类思想,研究RD图宽带RFI检测器,通过提取RD图纹理特征,运用模式识别,实现RD图有无宽带RFI的分类.图库设计以仿真RFI数据的RD图库作训练集,以实测数据的RD图库作测试集,识别算法以K近邻为例.实验仿真3种纹理特征、5种距离度量及有无海杂波等多种组合,检测性能统计表明,适当设计的干扰识别率普遍能达到96%以上,验证了本文所提的干扰仿真与检测方法的有效性. Over-the-horizon radar(OTHR)is often threatened by radio frequency interference(RFI),among which the wideband RFI spreading all over the range-Doppler(RD)map is the worst.This paper proposes the methods for RFI simulation and wideband RFI detection based on the RD map.Firstly,based on the auto-regressive and moving-average model,the RFI signal is simulated and can imitate the real RFI characteristics in the time-frequency domain and the RD map.Secondly,by the idea of image classification,the wideband RFI detector is designed based on the RD map.Its guideline is:based on the RD maps,extract their texture features and use pattern recognition algorithms to classify whether the RD map has any wideband RFI.For the RD image datasets,the simulated RFI data is used for the training dataset,while the real data is used for the testing dataset.The K-nearest neighbor(KNN)algorithm is employed as an example for classification.The experiments investigate three kinds of texture features,five kinds of distance measurements,and whether the sea clutter is cancelled.The results show the accuracy of a proper design is generally higher than 96%,which demonstrates the effectiveness of the proposed methods for RFI simulation and detection.
作者 罗忠涛 严美慧 卢琨 夏杭 LUO Zhong-tao;YAN Mei-hui;LU Kun;XIA Hang(School of Communication and Information Engineering,Chongqing University of Posts and Telecommunications,Chongqing 400065,China;Nanjing Research Institute of Electronics Technology,Nanjing,Jiangsu 210013,China)
出处 《电子学报》 EI CAS CSCD 北大核心 2022年第5期1174-1180,共7页 Acta Electronica Sinica
基金 国家自然科学基金(No.61701067,No.61702065)。
关键词 超视距雷达 距离-多普勒图 射频干扰仿真 干扰检测 纹理特征 K近邻 over-the-horizon radar range-Doppler map radio frequency interference simulation interference detection texture features K-nearest neighbor
  • 相关文献

参考文献9

二级参考文献52

  • 1张志龙,李吉成,沈振康.基于局部沃尔什变换的纹理特征提取方法研究[J].信号处理,2005,21(6):589-596. 被引量:6
  • 2薄华,马缚龙,焦李成.图像纹理的灰度共生矩阵计算问题的分析[J].电子学报,2006,34(1):155-158. 被引量:203
  • 3陈洋,王润生.结合Gabor滤波器和ICA技术的纹理分类方法[J].电子学报,2007,35(2):299-303. 被引量:25
  • 4[1]J G Daugman.Uncertainty relation for resolution in space,spatial frequency,and orientation optimized by two dimensional visual cortical filters [J].J Opt Soc Am A,1985,2(7):1160-1169. 被引量:1
  • 5[2]Wang X W,et al.A gray scale image based character recognition algorithm to low quality and low resolution Images [A].Document Recognition and Retrieval VIII,Electronic Imaging 2001 [C].San Jose:IS&T/SPIE,2001. 被引量:1
  • 6[3]L Wang,et al.Pavlidis.Direct gray scale extraction of features for character recognition [J].IEEE Trans on PAMI,1993,15(10):1053-1066. 被引量:1
  • 7[4]Zhang J Y,et al.Multi scale feature extraction and nested subset classifier design for high accuracy handwritten character recognition [A].Proc ICPR'2000 [C].Barcelona:IAPR,2000. 被引量:1
  • 8[5]J Mao,et al.Artificial neural networks for feature extraction and multivariate data projection [J].IEEE Trans on Neural Networks,1995,6(2):296-317. 被引量:1
  • 9[6]O D Trier,et al.Goal directed evaluation of binarization methods [J].IEEE Trans on PAMI,1995,17(12):1191-1201. 被引量:1
  • 10[7]H Kamada,et al.High speed,high accuracy binarization method for recognizing text in images of low spatial resolutions [A].Proc ICDAR'99 [C].Bangalore:IAPR,1999.139-142. 被引量:1

共引文献661

同被引文献6

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部