期刊文献+

具双时滞和媒体影响的新冠肺炎模型的稳定性

Stability of a novel coronavirus pneumonia model with two delays and media effects
下载PDF
导出
摘要 建立了具有媒体影响退化时滞和潜伏期时滞的两类易感者新冠肺炎SIR(susceptible,infective,removed)传染病模型,利用极限系统证明了系统零平衡点和无病平衡点的全局稳定性,并依次把媒体影响退化时滞、疾病潜伏时滞作为分支参数,分析了疾病平衡点局部Hopf分支的存在性.发现当把媒体影响退化时滞控制在一个左闭右开区间内时,无病平衡点全局稳定;当潜伏期时滞超过临界值时,疾病平衡点处会出现Hopf分支,新冠肺炎以周期震荡的形式存在.可见,时滞大小对模型稳定性有重要影响,媒体影响对疫情控制起到重要作用. A novel coronavirus pneumonia SIR(susceptible,infective,removed)epidemic model with two types of susceptibility,namely,media degradation delay and latency latency,was established.The global stability of the zero equilibrium and the disease-free equilibrium of the system was systematically proved.The existence of local Hopf bifurcation of the disease equilibrium was analyzed by taking the media influence degradation delay and the disease latent delay as bifurcation parameters.It was found that the disease-free equilibrium was globally stable when the media influence degradation delay was controlled in a left closed right open interval,and when the latency delay exceeded the critical value,there would be Hopf bifurcation at the equilibrium point of the disease,the novel coronavirus pneumonia existed in the form of periodic oscillation.It was obvious that the size of time delay had an important effect on the stability of the model,the influence of the media played an important role in the control of epidemic situation.
作者 童姗姗 王国欣 窦霁虹 TONG Shanshan;WANG Guoxin;DOU Jihong(School of Mathematics and Physics,Nanyang Institute of Technology,Nanyang 473004,China;School of Mathematics,Northwest University,Xi’an 710127,China)
出处 《安徽大学学报(自然科学版)》 CAS 北大核心 2022年第4期5-10,共6页 Journal of Anhui University(Natural Science Edition)
基金 国家自然科学基金资助项目(11901320) 河南省教育厅高等学校重点科研项目(19A110027) 2020年南阳市软科学研究计划项目(RKX005) 南阳理工学院课程思政专项教改项目(NIT2020KCSZ-030)。
关键词 媒体影响退化时滞 潜伏期时滞 平衡点 稳定性 HOPF分支 media impact degradation delay latency delay equilibrium point stability Hopf bifurcation
  • 相关文献

参考文献9

二级参考文献28

  • 1严阅,陈瑜,刘可伋,罗心悦,许伯熹,江渝,程晋.基于一类时滞动力学系统对新型冠状病毒肺炎疫情的建模和预测[J].中国科学:数学,2020,50(3):385-392. 被引量:96
  • 2刘畅,丁光宏,龚剑秋,王凌程,珂张迪.SARS爆发预测和预警的数学模型研究[J].科学通报,2004,49(21):2245-2251. 被引量:15
  • 3陈兰荪,陈键.非线性生物动力系统[M].北京:科学出版社,1993. 被引量:1
  • 4Esteva L, Vargas C. A model for dengue disease with variable human population [J]. J Math Biol, 1999, 38:220-240. 被引量:1
  • 5Swart J H. Hopf bifurcation and stable limit cycle behavior in the spread of infectious disease with special appriation to fox rabies [J]. Math Biosci, 1989, 95:199-207. 被引量:1
  • 6Aiello W G, Freedman H I. A time delay model of single-species growth with stage structure [J]. Math Biosci, 1990, 101:139-153. 被引量:1
  • 7Aiello W G, Freedman H I, Wu Jianhong. Analysis of a model representing stage struc- tured population growth with state-dependent time delay [J]. SIAM J Appl Math, 1992, 52:855 869. 被引量:1
  • 8Bulmer M G. Periodical insects [J]. Amer Nat, 1977, 111:1099-1117. 被引量:1
  • 9Desharnais R A, Liu Laifu. Stable demographic limit cycles in a laboratory populations of tribolium castaneum [J]. ,I Anim Ecol, 1987, 56:885 906. 被引量:1
  • 10Fisher M E, Gob B S. Stability results for delayed-recruitment models in population dynamics [J]. J Math Biol, 1990, 19:139-153. 被引量:1

共引文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部