摘要
亚硝酸盐是水体中重要的必测指标之一,对于水体质量的评估有着重要意义。但传统的检测方法操作复杂、受干扰因素多、测定时间长、不能及时反映水质变化、无法及时有效地预警突发水污染事件。鉴于此,探索准确、实时、环保的环境水体和饮用水中的亚硝酸盐含量检测办法具有重要意义。采用优级纯试剂配制10种浓度的亚硝酸盐氮标准溶液(0.02,0.04,0.06,0.08,0.10,0.12,0.14,0.16,0.18和0.20 mg·L^(-1)),采用OCEAN-HDX-XR微型光纤光谱仪扫描10次各浓度亚硝酸盐溶液在181.1~1023.1 nm范围内的透射光谱,取平均值作为各浓度亚硝酸盐溶液原始透射光谱,之后以亚硝酸盐含量作为因变量,全波段原始透射光谱作为自变量,采用随机森林回归中特征变量重要性方法,筛选特征变量,再此基础上利用交叉验证法,挑选最为稳定的模型变量个数,建立亚硝酸盐优化随机森林反演模型。结果如下:(1)利用全波段建立的随机森林模变量解释率(var explained)=76.49%,均方残差(mean of squared residuals)=0.000688;(2)随机森林变量重要性方法筛选对亚硝酸盐反演的敏感波段,其中195.1 nm重要性值最高,并利用留一交叉法发现,当利用19个光谱特征变量时随机森林模型的均方根误差最低,以筛选光谱特征变量建立的优化随机森林变量解释率(var explained)=83.45%,均方残差(mean of squared residuals)=0.000552。变量筛选有效减少了光谱数据量,对优化模型的建立提供了基础;(3)对建立模型进行模型检验,其中全波段随机森林模型测试集R^(2)=0.8203,RMSE=0.03,检验集R^(2)=0.9793,RMSE=0.01,优化随机森林模型测试集R^(2)=0.8734,RMSE=0.022,检验集R^(2)=0.9798,RMSE=0.008,对比全波段随机森林模型与优化后随机森林模型后发现,优化随机森林模型测试集与检验集模型解释度、模型精度均要高于全波段随机森林模型,说明优化方法不仅可有效降低光谱维度,对�
NO_(2)-N is an important parameter in water bodies and can quickly detect organic pollution parameters.It is of great significance to the assessment of water quality.However,traditional methods are complicated in operation,subject to many interference factors,long measurement time,cannot reflect water quality changes in time,and cannot provide timely and effective early warning.For sudden water pollution incidents,because of the shortcomings of traditional methods,it is of great significance to explore accurate,real-time,and environmentally friendly detection methods for the NO_(2)-N content in environmental water bodies and drinking water.This experiment is to study the use of superior grade pure reagents to prepare 10 concentrations of NO_(2)-N nitrogen standard solutions(0.02,0.04,0.06,0.08,0.1,0.12,0.14,0.16,0.18 and 0.2 mg·L^(-1)),using the OCEAN-HDX-XR micro-fiber spectrometer to scan 10 times the transmission spectrum of the NO_(2)-N solution of each concentration in the range of 181.1~1023.1 nm.Take the average value as the original transmission spectrum of the NO_(2)-N solution of each concentration,and then take the NO_(2)-N content of the solution as the dependent variable and the original transmission spectrum as the independent variable.Use the method of variable feature importance in random forest regression to screen the feature variables.Based on the cross-validation method,the number of the most stable model variables is selected,and the NO_(2)-N optimization random forest inversion model is established.The results of the study are as follows:(1)The variable explained rate(Var Explained)of the random forest model established by the whole band(Var Explained)=76.49%,and the mean squared residuals(Mean of squared residuals)=0.000688;In the sensitive band of salt inversion,195.1 nm has the highest importance value,and the leave-one-out crossover method is used to find that the random forest model has the lowest root mean square error when 19 spectral characteristic variables are used to screen the o
作者
王彩玲
王波
纪童
徐君
剧锋
王洪伟
WANG Cai-ling;WANG Bo;JI Tong;XU Jun;JU Feng;WANG Hong-wei(College of Computer Science,Xi’an Shiyou University,Xi’an 710065,China;Grassland Experiment Station of Yanchi,Yanchi 751506,China;College of Grass Industry,Gansu Agricultural University,Lanzhou 730070,China;Xi’an Aeronautical University,Xi’an 710077,China;Yinchuan Customs District P.R.China,Yinchuan 750000,China;School of Artificial Intelligence,Optics and Electronics,Northwestern Polytechnical University,Xi’an 710072,China)
出处
《光谱学与光谱分析》
SCIE
EI
CAS
CSCD
北大核心
2022年第7期2181-2186,共6页
Spectroscopy and Spectral Analysis
基金
国家自然科学基金项目(31160475,61401439)
陕西省重点研发计划项目(2019GY-112)
西安航空学院高教研究项目(2018GJI005)
陕西西安教育科学“十三五”规划2018年度课题(SGHI8H435)资助。