摘要
HONO作为大气OH自由基的前体物和重要贡献源,影响着大气中污染物的氧化降解,控制着对流层大气的自净能力,对灰霾和光化学烟雾形成起到重要作用,同时受污染排放特征、垂直传输和混合、非均相反应和大气光氧化等影响,HONO具有明显的垂直分布特征,因此探究大气中HONO的垂直分布特征对于了解大气灰霾和光化学污染的形成和控制都十分重要。MAX-DOAS作为一种被动遥感技术,能够快速有效地获取大气中污染物的立体分布特征。采用MAX-DOAS仪器对合肥市科学岛2017年12月冬季大气HONO和NO_(2)进行了立体探测,通过基于最优估算的气溶胶和痕量气体廓线反演算法PriAM获取了两种气体的垂直分布特征。研究结果表明,在观测期间NO_(2)在近地面10 m内体积混合比(VMR)和垂直柱浓度(VCD)的范围分别在0.51×10^(11)~20.5×10^(11)molecules·cm^(-3)和6.0×10^(15)~5.5×10^(16)molecules·cm^(-2),在垂直方向上其浓度主要集中在1 km内,且在近地面浓度混合均匀。HONO的VMR和VCD分别在0.03×10^(10)~5.1×10^(10)molecule s·cm^(-3)和3.5×10^(14)~7.0×10^(15)molecules·cm^(-2)之间,浓度高值出现在100 m内,浓度随高度的升高而明显下降。通过对HONO和NO_(2)的对比发现,HONO/NO_(2)比值在0.17%~16.0%(VMR)和1.0%~25.0%(VCD)之间,表明研究期间HON O主要来自于NO_(2)的转化。对冬季一次典型污染过程(2017.12.26—2017.12.31)分析,HONO/NO_(2)的比值大于5%,且HONO的浓度值升高(大于0.26×10^(11)molecule s·cm^(-3)),表明污染条件下NO_(2)向HONO的转化作用变强。结合风场信息研究发现,污染期间研究区域的NO_(2)和HONO浓度受到合肥市城区、安徽北部和西北部地区传输的影响。
Nitrite(HONO),as one of the sources of OH free radical in the atmosphere,plays an important role in the oxidative capacity of the atmosphere.Moreover,previous studies have shown that HONO plays an important role in generating atmospheric haze in winter.The conversion of NO_(2) is considered one of the important sources of HONO.Therefore,researching the vertical distribution characteristics of HONO in the atmosphere has an important role in studying the formation and control of atmospheric pollution.Because of the important role of HONO in the atmosphere,currently,the methods of chemiluminescence and spectroscopy,as well as indirect methods,are mainly used to measure HONO in the atmosphere.MAX-DOAS method is a passive remote sensing technology that can quickly and effectively obtain the three-dimensional distribution of pollutants in the atmosphere.In this paper,the MAX-DOAS instrument was used for stereo detection of HONO and NO_(2) in the winter atmosphere of the Science Island of Hefei in December 2017.The vertical distribution characteristics of those are obtained through the PriAM algorithm.The research results show that during the observation period,the NO_(2) vertical mixed concentration(VMR)and vertical column concentration(VCD)in the range of 10 m near the ground were in the range of 0.51×10^(11)~20.5×10^(11) molecules·cm^(-3) and 6.0×10^(15)~5.5×10^(16) molecules·cm^(-2),respectively.The concentration was mainly concentrated within 1 km,and evenly mixed near the ground.However,the VMR and VCD of HONO were between 0.03×10^(10)~5.1×10^(10) molecules·cm^(-3) and 3.5×10^(14)~7.0×10^(15) molecules·cm^(-2),respectively.The upper level of concentration was within 100 m,and its concentration decreased significantly with the increase in height.The HONO/NO_(2) ratio was between 0.17%~16.0%(VMR)and 1.0%~25.0%(VCD),indicating that HONO was mainly derived from NO_(2) conversion during the study period.Under a typical polluted episode(2017.12.26—2017.12.31),HONO/NO_(2) was greater than 5%,and the concent
作者
田鑫
任博
谢品华
牟福生
徐晋
李昂
李素文
郑江一
李晓梅
任红梅
黄骁辉
潘屹峰
田伟
TIAN Xin;REN Bo;XIE Pin-hua;MOU Fu-sheng;XU Jin;LI Ang;LI Su-wen;ZHENG Jiang-yi;LI Xiao-mei;REN Hong-mei;HUANG Xiao-hui;PAN Yi-feng;TIAN Wei(Institutes of Physical Science and Information Technology,Anhui University,Hefei 230601,China;Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation,Huaibei Normal University,Huaibei 235000,China;Key Laboratory of Environmental Optical and Technology,Anhui Institute of Optics and Fine Mechanics,Chinese Academy of Sciences,Hefei 230031,China;CAS Center for Excellence in Urban Atmospheric Environment,Institute of Urban Environment,Chinese Academy of Sciences,Xiamen 361021,China;School of Environmental Science and Optoelectronic Technology,University of Science and Technology of China,Hefei 230026,China)
出处
《光谱学与光谱分析》
SCIE
EI
CAS
CSCD
北大核心
2022年第7期2039-2046,共8页
Spectroscopy and Spectral Analysis
基金
国家自然科学基金项目(U19A2044,42105132)
安徽省自然科学基金项目(2008085QD183,2008085QD182)
中国科学院环境光学与技术重点实验室开放基金项目(2005DP173065-2019-04)
污染物敏感材料与环境修复安徽省重点实验室开放课题资助。
关键词
多轴差分吸收光谱
二氧化氮
气态亚硝酸
垂直分布
反演算法
Multi-Axis differential optical absorption spectroscopy
NO_(2)
HONO
Vertical distribution
Inversion algorithm