期刊文献+

基于自注意力机制增强的深度学习图像压缩 被引量:3

A Self-attention Mechanism Augmented Deep Learning Model for Images Compression
下载PDF
导出
摘要 提出了一种基于自注意力机制增强的深度学习模型,用于无人机侦察图像的压缩与解压。与现有方法相比,提出的深度学习模型有两个显著特点:其一,模型由四部分组成(编码器、二值化器、量化器和解码器),并且可以通过端到端的优化提高模型的压缩和解压效率;其二,量化器是基于自注意力机制增强的多层前馈神经网络,它能充分利用图像的上下文信息对图像进行压缩。在公开数据集Kodak和Tecnick的实验结果表明,提出模型的压缩率-保真率曲线优于传统的图像压缩标准和现有的深度学习模型。对于常规大小的图像,在保持图像质量MS-SSIM为85%~95%的前提下,图像压缩比BPP能达到7%~15%,并且在普通CPU上其处理速度达0.48秒/张,能显著降低影像的数据大小且不牺牲处理速度。 A self-attention mechanism augmented deep learning model is proposed to compress and decompress the UAV reconnaissance image in this paper.Compared with the existing methods,the proposed deep learning model in this paper has two significant characteristics.Firstly,the model consists of four parts(encoder,binarizer,quantizer and decoder),and the compression and decompression efficiency of the model can be improved through end-to-end optimization.Secondly,the quantizer is a self-attention mechanism augmented multi-layer feedforward neural network,which can make full use of the context information to compress the image.Experimental results on public data sets such as Kodak and Tecnick show that the Bits Per Pixel-Peak Signalto Noise Ratial(BPP-PSNR)curve of the proposed model is better than that of the traditional image compression standards and existing deep learning models.For images with commonly used size,the compression ratio of the model,e.g.BPP,can reach 7%~15%while maintaining the MS-SSIM of 85%~95%,and the processing speed can reach 0.48 s/sheet on the ordinary CPU.The model proposed in this paper can significantly reduce the data size of the compressed image without sacrificing the processing speed.
作者 展亚南 施晓东 孙镱诚 丁阳 杨万扣 ZHAN Ya-nan;SHI Xiao-dong;SUN Yi-cheng;DING Yang;YANG Wan-kou(The 28th Research Institute of China Electronics Technology Group Corporation,Nanjing 210007,China;School of Automation,Southeast University,Nanjing 211189,China)
出处 《控制工程》 CSCD 北大核心 2022年第3期536-541,共6页 Control Engineering of China
基金 装备预先研究项目(301021302)。
关键词 图像压缩 深度学习 自注意力机制 端到端 多层前馈神经网络 Image compression deep learning self-attention mechanism end-to-end multi-layer feedforward neural network
  • 相关文献

参考文献5

二级参考文献23

  • 1Oppelt A. Imaging system for medical diagnostics[M]. Erlangen: Publicis corporate publishing, 2005. 被引量:1
  • 2DICOM Standards committee. Digital imaging and communications in medicine[M]. 2006. 被引量:1
  • 3Bhaskaran V, Konstantinides K.. Image and video compression standards: algorithms and architectures[M]. Boston: Kluwer academic publishers, 1997. 被引量:1
  • 4M.K. Mandal. Multimedia signals and systems[M]. Boston: Kluwer academic publisher, 2002. 被引量:1
  • 5Evgeeny Gershikov, Emilia Lavi-Burlak, and Moshe Porat. Correlation-based approach to color image compression. Signal processing-image Communication[J], 22(2007)9: 719-733. 被引量:1
  • 6Yalon Roterman and Moshe Porat. Color image coding using regional correlation of primary colors[J]. Image and vision computing, 25(2007)5: 637-651. 被引量:1
  • 7European society of radiology (ESR). Usability of irreversible image compression in radiological imaging[J]. A position paper by the European society of radiology (ESR). Insights imaging, 2(2011)2: 103-115. 被引量:1
  • 8M.S. Yang, Y.J. Hu Karen, C.R. Lin, et al. Segmentation techniques for tissue differentiation in MRI of ophthalmology using fuzzy clustering algorithms[J]. Magnetic resonance imaging, 20(2002)2: 173-179. 被引量:1
  • 9GC. Kannakar and L.S. Dooley. A generic fuzzy rule based image segmentation algorithm[J]. Pattern recognition letters, 23(2002)10: 1215-1227. 被引量:1
  • 10Thyagarajan K S. Still image and video compression with Matlab[M]. Hoboken, New Jersey: John Wiley & Sons, Inc., 2011. 被引量:1

共引文献30

同被引文献35

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部