期刊文献+

Probability-Based Channel Pruning for Depthwise Separable Convolutional Networks 被引量:1

原文传递
导出
摘要 Channel pruning can reduce memory consumption and running time with least performance damage,and is one of the most important techniques in network compression.However,existing channel pruning methods mainly focus on the pruning of standard convolutional networks,and they rely intensively on time-consuming fine-tuning to achieve the performance improvement.To this end,we present a novel efficient probability-based channel pruning method for depthwise separable convolutional networks.Our method leverages a new simple yet effective probability-based channel pruning criterion by taking the scaling and shifting factors of batch normalization layers into consideration.A novel shifting factor fusion technique is further developed to improve the performance of the pruned networks without requiring extra time-consuming fine-tuning.We apply the proposed method to five representative deep learning networks,namely MobileNetV1,MobileNetV2,ShuffleNetV1,ShuffleNetV2,and GhostNet,to demonstrate the efficiency of our pruning method.Extensive experimental results and comparisons on publicly available CIFAR10,CIFAR100,and ImageNet datasets validate the feasibility of the proposed method.
作者 Han-Li Zhao Kai-Jie Shi Xiao-Gang Jin Ming-Liang Xu Hui Huang Wang-Long Lu Ying Liu 赵汉理;史开杰;金小刚;徐明亮;黄辉;卢望龙;刘影(College of Computer Science and Artificial Intelligence,Wenzhou University,Wenzhou 325035,China;State Key Laboratory of CAD&CG,Zhejiang University,Hangzhou 310058,China;School of Information Engineering,Zhengzhou University,Zhengzhou 450000,China;Department of Computer Science,Memorial University of Newfoundland,St.John's A1B 3X5,Canada)
出处 《Journal of Computer Science & Technology》 SCIE EI CSCD 2022年第3期584-600,共17页 计算机科学技术学报(英文版)
基金 the National Natural Science Foundation of China under Grant Nos.62036010 and 62072340 the Zhejiang Provincial Natural Science Foundation of China under Grant Nos.LZ21F020001 and LSZ19F020001 the Open Project Program of the State Key Laboratory of CAD&CG,Zhejiang University under Grant No.A2220.
  • 相关文献

同被引文献9

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部