期刊文献+

中国石油新能源电力系统 被引量:3

New Energy Power System of PetroChina
下载PDF
导出
摘要 中国石油勘探开发研究院结合近年来油气田新能源项目的发展现状和趋势,并通过对当前新能源电力业务的梳理和详细调研,设计并实现了中国石油新能源电力系统。该系统基于数据中台,结合大数据、人工智能技术及多元数据分析算法,按照业务场景建立了不同的数据分析模型,进行了数据分析和数据治理,从而实现智能化的数据分析。构建出了基于云平台底层的数据模型;利用BI(商务智能)报表展示工具,实现了新能源电力数据可视化分析;在数据湖架构和BI报表展示的基础上,设计、开发完成了中国石油新能源电力系统。通过系统的建设满足了中国石油新能源电力信息化建设需求,丰富了新能源电力挖掘与数据分析的思路和方法,提升了数据采集和数据使用效率,更好地为新能源电力的生产管理和决策分析提供依据。 PetroChina Exploration and Development Research Institute has designed and implemented a new energy power system for PetroChina by reviewing and investigating in details the current business on new energy power based on the development status and trend of new energy projects in oil and gas fields in recent years.This system adopts a framework based on data middle platform,inte-grates big data,artificial intelligence technology and diversified data analysis algorithms,and establishes different data analysis models according to business scenarios for data analysis and governance,so as to realize intelligent data analysis.A data model based on the bottom layer of cloud platform has been constructed.Business intelligence(BI)report display tool has been used to realize the visual-ized analysis of new energy power data.On the basis of data lake architecture and BI report display,the new energy power system of PetroChina has been designed,developed and implemented.Through the construction of this system,PetroChina's demand for applying IT technology to its new energy power is met,the ideas and methods for new energy power development and data analysis are enriched,and the efficiency of data acquisition and use is improved,which provides a basis for the production management and decision-making analysis of new energy power in a better way.
作者 张彦菊 石兵波 赵娇燕 张健康 ZHANG Yanju;SHI Bingbo;ZHAO Jiaoyan;ZHANG Jiankang(Research Institute of Petroleum Exploration and Development,PetroChina,Beijing 100089,China)
出处 《新疆石油天然气》 CAS 2022年第2期21-25,共5页 Xinjiang Oil & Gas
关键词 新能源电力 智能化 可视化 云平台 商务智能 数据模型 new energy power intellectualization visualization cloud platform business intelligence data model
  • 相关文献

参考文献21

二级参考文献120

共引文献232

同被引文献15

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部