期刊文献+

Development of functional connectome gradients during childhood and adolescence 被引量:6

儿童青少年时期脑功能连接梯度的发育规律
原文传递
导出
摘要 Connectome mapping studies have documented a principal primary-to-transmodal gradient in the adult brain network,capturing a functional spectrum that ranges from perception and action to abstract cognition.However,how this gradient pattern develops and whether its development is linked to cognitive growth,topological reorganization,and gene expression profiles remain largely unknown.Using longitudinal resting-state functional magnetic resonance imaging data from 305 children(aged 6-14 years),we describe substantial changes in the primary-to-transmodal gradient between childhood and adolescence,including emergence as the principal gradient,expansion of global topography,and focal tuning in primary and default-mode regions.These gradient changes are mediated by developmental changes in network integration and segregation,and are associated with abstract processing functions such as working memory and expression levels of calcium ion regulated exocytosis and synaptic transmission-related genes.Our findings have implications for understanding connectome maturation principles in normal development and developmental disorders. 成年人脑功能网络呈现从初级皮层到联合皮层渐变的核心连接梯度模式,支持了从初级感知觉到复杂抽象认知的信息加工过程.然而,目前对于人脑网络的初级皮层-联合皮层连接梯度如何发育,及其与认知发展、基因表达的关系依然知之甚少.本研究基于两个独立的6~14岁大样本儿童青少年静息态脑功能影像数据库,定量描绘了人脑功能网络的初级皮层-联合皮层连接梯度的发育轨迹.发现该连接梯度在儿童早期已经出现,并在8~11岁从次级梯度上升为首要核心梯度;其全局指标和局部分数都具有显著的年龄效应,梯度分数变化主要位于默认网络和感知觉皮层;梯度指标与个体工作记忆能力显著正相关,且连接梯度的发育受到脑功能网络分化与整合的中介调控.通过连接组-转录组联合分析,发现核心连接梯度的发育与突触传递等基因的表达水平显著相关.研究结果对理解人脑功能连接组的发育规则,建立脑发育性障碍的临床评估具有重要价值.
作者 Yunman Xia Mingrui Xia Jin Liu Xuhong Liao Tianyuan Lei Xinyu Liang Tengda Zhao Ziyi Shi Lianglong Sun Xiaodan Chen Weiwei Men Yanpei Wang Zhiying Pan Jie Luo Siya Peng Menglu Chen Lei Hao Shuping Tan Jia-Hong Gao Shaozheng Qin Gaolang Gong Sha Tao Qi Dong Yong He 夏云曼;夏明睿;刘瑾;廖旭红;雷天缘;梁新宇;赵腾达;石子怡;孙良龙;陈晓丹;门卫伟;王延培;潘芝颖;骆洁;彭思雅;陈梦璐;郝磊;谭淑平;高家红;秦绍正;龚高浪;陶沙;董奇;贺永(State Key Laboratory of Cognitive Neuroscience and Learning,Beijing Normal University,Beijing 100875,China;Beijing Key Laboratory of Brain Imaging and Connectomics,Beijing Normal University,Beijing 100875,China;IDG/McGovern Institute for Brain Research,Beijing Normal University,Beijing 100875,China;School of Systems Science,Beijing Normal University,Beijing 100875,China;Center for MRI Research,Academy for Advanced Interdisciplinary Studies,Peking University,Beijing 100871,China;Beijing City Key Laboratory for Medical Physics and Engineering,Institute of Heavy Ion Physics,School of Physics,Peking University,Beijing 100871,China;Beijing Huilongguan Hospital,Peking University Huilongguan Clinical Medical School,Beijing 100096,China;IDG/McGovern Institute for Brain Research,Peking University,Beijing 100871,China;Chinese Institute for Brain Research,Beijing 102206,China)
出处 《Science Bulletin》 SCIE EI CSCD 2022年第10期1049-1061,M0004,共14页 科学通报(英文版)
基金 supported by the National Natural Science Foundation of China(31830034,82021004,81620108016,31221003,31521063,81671767,82071998,81971690,32130045,and 61761166004) Changjiang Scholar Professorship Award(T2015027) the National Key Research and Development Project of China(2018YFA0701402) Beijing Nova Program(Z191100001119023) the Beijing Brain Initiative of Beijing Municipal Science&Technology Commission(Z181100001518003) the Fundamental Research Funds for the Central Universities(2020NTST29)。
  • 相关文献

参考文献1

二级参考文献3

共引文献3

同被引文献20

引证文献6

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部