摘要
The development of high-performance Ir-based catalyst for electrocatalysis of oxygen evolution reaction(OER)in acidic media plays a critical role in realizing the commercialization of polymer electrolyte membrane-based water electrolyzer technology.Here we report a low-Ir core–shell OER electrocatalyst consisting of an intermetallic IrGa(IrGa-IMC)core and a partially oxidized Ir(IrOx)shell.In acidic electrolytes,the IrGa-IMC@IrOx core–shell catalysts exhibit a low overpotential of 272 mV at 10 mA·cm^(−2) with Ir loading of~20µg·cm^(−2) and a mass activity of 841 A·gIr^(−1) at 1.52 V,which is 3.6 times greater than that of commercial Ir/C(232 A·gIr^(−1))catalyst.We understand by the density functional theory(DFT)calculations that the enhanced OER activity of the IrGa-IMC@IrO_(x) catalysts is ascribed to the lifted degeneracy of Ir 5d electron of surface IrO_(x) sites induced by the intermetallic IrGa core,which increases the adsorption capacity of IrO_(x) layer for O and OH binding and eventually lowers the energy barrier of the OER rate-determining steps.
基金
the National Key Research and Development Program of China(No.2018YFA0702001)
the National Natural Science Foundation of China(Nos.22071225 and 11774327)
the Fundamental Research Funds for the Central Universities(No.WK2060190103)
the Joint Funds from Hefei National Synchrotron Radiation Laboratory(No.KY2060000175)
the support by“the Recruitment Program of Thousand Youth Talents”.