期刊文献+

Adaptive spectral affinity propagation clustering 被引量:2

下载PDF
导出
摘要 Affinity propagation(AP)is a classic clustering algorithm.To improve the classical AP algorithms,we propose a clustering algorithm namely,adaptive spectral affinity propagation(AdaSAP).In particular,we discuss why AP is not suitable for non-spherical clusters and present a unifying view of nine famous arbitrary-shaped clustering algorithms.We propose a strategy of extending AP in non-spherical clustering by constructing category similarity of objects.Leveraging the monotonicity that the clusters’number increases with the self-similarity in AP,we propose a model selection procedure that can determine the number of clusters adaptively.For the parameters introduced by extending AP in non-spherical clustering,we provide a grid-evolving strategy to optimize them automatically.The effectiveness of AdaSAP is evaluated by experiments on both synthetic datasets and real-world clustering tasks.Experimental results validate that the superiority of AdaSAP over benchmark algorithms like the classical AP and spectral clustering algorithms.
出处 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第3期647-664,共18页 系统工程与电子技术(英文版)
基金 This work was supported by the National Natural Science Foundation of China(71771034,71901011,71971039) the Scientific and Technological Innovation Foundation of Dalian(2018J11CY009).
  • 相关文献

参考文献1

共引文献1

同被引文献36

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部