期刊文献+

基于MSRCR与注意力机制的群体蚕茧智能识别算法 被引量:4

Intelligence recognition algorithm of group cocoons based on MSRCR and CBAM
下载PDF
导出
摘要 针对目前人工选茧误选率高、效率低的问题,本文以上车茧、黄斑茧、烂茧为研究对象,提出一种基于多尺度色彩恢复算法与注意力机制的群体蚕茧智能识别算法。首先,将原始图像进行低通滤波,并乘以色彩恢复因子,在多尺度内恢复蚕茧色彩与表面细节信息,得到多尺度高频细节图像。其次,通过修改YOLOv3算法主干特征提取网络中的残差层引入注意力机制,对卷积后特征图中的分支特征重新标定,增大有效特征的权重。最后,在非极大值抑制算法基础上增加一项得分与相邻框重合度计算过程,筛除YOLOv3后期无效预测框,实现群体蚕茧种类识别。实验结果表明,本文算法的均值平均精度达到85.52%,相较于YOLOv3增加4.85%。 Silk,as a"national treasure"that has accumulated thousands of years of civilization,is one of the very few advantageous industries in China that can dominate the international market.The silk industry plays an economic,ecological and social role,and has made important contributions to farmers’prosperity,employment expansion,ecological protection and export earnings.The quality of silk is closely related to the control of the type of cocoon at the sorting stage.Sensory testing is still the main mode of cocoon sorting in China at this stage,that is,the silk reeling enterprise requires inspectors to classify the raw material cocoon according to national standards by original methods such as eye and hand touch.Cocoon sorting requires a high quality of inspectors who should not only have rich experience in sorting,standardized operation and smooth vision,but also have a deep understanding of the technical standards for cocoon sorting.The high technical requirements are a test for the technical personnel of the enterprise and increase the management and training costs of the enterprise.In order to solve the problems of high labor cost and low efficiency in the traditional sorting process,this paper implements the intelligent identification of group cocoon species based on multi-scale retinex with color restoration and convolution block attention module.Because the surface of the cocoon collected in the experiment is susceptible to light,some areas are less visible.In this paper,from the perspective of restoring the surface color of the cocoon,multi-scale color recovery of the collected images is carried out.The MSRCR algorithm uses the Gaussian function to perform low-pass filtering on the original map of the cocoon at multiple scales to highlight the defect characteristics of the surface.In order to solve the problem of distortion of cocoon images due to local contrast enhancement,this paper uses color recovery factors to highlight the information of darker areas.Secondly,when the YOLOv3 algorithm is applied to the
作者 孙卫红 杨程杰 邵铁锋 梁曼 郑健 SUN Weihong;YANG Chengjie;SHAO Tiefeng;LIANG Man;ZHENG Jian(College of Mechanical and Electrical Engineering,China Jiliang University,Hangzhou 310018,China;Cocoon and Silk Quality Inspection Technology Institute,China Jiliang University,Hangzhou 310018,China;Jiangxi Market Supervision Management Quality and Safety Inspection Center,Nanchang 330096,China)
出处 《丝绸》 CAS CSCD 北大核心 2022年第6期58-65,共8页 Journal of Silk
基金 国家市场监管总局科技计划项目(S2021MK0217) 浙江省公益技术应用研究项目(LGG20E050014) 江西省市场监督管理局科技项目(GSJK202003)。
关键词 蚕茧 智能识别 MSRCR算法 YOLOv3算法 注意力机制 NMS算法 cocoon intelligent recognition MSRCR algorithm YOLOv3 algorithm convolution block attention module NMS algorithm
  • 相关文献

参考文献14

二级参考文献82

共引文献500

同被引文献48

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部