摘要
Exosomal glycoproteins play significant roles in many physiological and pathological procedures. However, the current methods for studying exosomal glycoproteins have low sensitivity or can affect exosomal biological function. Herein, we developed a proximity dual-tagging strategy using an induced hybridization chain reaction(HCR) from the target’s non-functional epitope for amplified visualization and functional exploration of exosomal protein-specific glycosylation. This strategy leverages dualtagging based on the aptamer with little influence on target function and metabolic glycan labelling, and the rigid product and high sensitivity of HCR. The method improves the signal of visualizing exosomal PD-L1(exo PD-L1) by 7.7-fold compared with the signal without HCR amplification without affecting the natural exo PD-L1/PD-1 interaction. As a result, we verified that the interaction between exo PD-L1 and PD-1 positive cells is positively correlated to the glycosylation level of exo PD-L1. Overall,we have developed a sensitive method with little functional influence to visualize exosomal protein-specific glycosylation in situ,offering a powerful tool for studying the biological implications of exosomal glycoproteins.
基金
supported by the National Natural Science Foundation of China (22022409, 21735004, 21874089)
the Program for Changjiang Scholars and Innovative Research Team in University(IRT13036)
the National Science Fund for Fostering Talents in Basic Science (J1310024)
XMU Training Program of Innovation and Entrepreneurship for Undergraduates。