期刊文献+

Global hydrostatic approximation of the hyperbolic Navier-Stokes system with small Gevrey class 2 data In memory of Professor Geneviève Raugel 被引量:1

原文传递
导出
摘要 We investigate the hydrostatic approximation of a hyperbolic version of Navier-Stokes equations,which is obtained by using the Cattaneo type law instead of the Fourier law,evolving in a thin strip R×(0,ε).The formal limit of these equations is a hyperbolic Prandtl type equation.We first prove the global existence of solutions to these equations under a uniform smallness assumption on the data in the Gevrey class 2.Then we justify the limit globally-in-time from the anisotropic hyperbolic Navier-Stokes system to the hyperbolic Prandtl system with such Gevrey class 2 data.Compared with Paicu et al.(2020)for the hydrostatic approximation of the 2-D classical Navier-Stokes system with analytic data,here the initial data belongs to the Gevrey class 2,which is very sophisticated even for the well-posedness of the classical Prandtl system(see Dietert and GerardVaret(2019)and Wang et al.(2021));furthermore,the estimate of the pressure term in the hyperbolic Prandtl system gives rise to additional difficulties.
出处 《Science China Mathematics》 SCIE CSCD 2022年第6期1109-1146,共38页 中国科学:数学(英文版)
基金 supported by K.C.Wong Education Foundation supported by the Agence Nationale de la Recherche,Project IFSMACS(Interaction Fluide-Structure:Modélisation,analyse,contr?le et simulation)(Grant No.ANR-15-CE40-0010) supported by National Basic Research Program of China(Grant No.2021YFA1000800) National Natural Science Foundation of China(Grants Nos.11731007,12031006 and 11688101)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部