期刊文献+

基于半监督学习的网络流量分析研究 被引量:6

Survey of Network Traffic Analysis Based on Semi Supervised Learning
下载PDF
导出
摘要 半监督学习是一种新的机器学习方法,它将监督学习与无监督学习相结合,用少量的标签来分析大量的未标记数据集。近年来,半监督学习已成为国内外学者的研究热点之一,并被广泛应用于各个领域。随着5G等技术的兴起,网络流量数据流的复杂化、多样化给网络安全领域带来了新的挑战,因此,将半监督技术运用于网络流量数据的分析成为主要方法之一。现对当前网络流量数据特征以及处理方式进行介绍,阐述半监督学习在处理网络流量上的优势,总结了半监督学习在处理流量分析问题上的研究进展,并从半监督分类、半监督聚类和半监督降维等方面阐述了半监督学习在网络流量分析中的实际应用,最后指出了当前半监督网络流量分析方法在未来研究中面临的挑战和新的研究方向。 Semi supervised learning is a new machine learning method.It combines supervised learning with unsupervised lear-ning,and uses a small number of tags to analyze a large number of unlabeled data sets.In recent years,semi supervised learning has become one of the research hotspots of scholars at home and abroad,and has been widely used in various fields.With the rise of 5 G and other technologies,the complexity and diversification of network traffic data flow have brought new difficulties to the field of network security.Therefore,applying semi supervised technology to the analysis of network traffic data has become one of the main methods.This paper introduces the characteristics and processing methods of current network traffic data,expounds the advantages of semi supervised learning in processing network traffic,summarizes the research progress of semi supervised learning in processing traffic analysis,and expounds the practical application of semi supervised learning in network traffic analysis from the aspects of semi supervised classification,semi supervised clustering and semi supervised dimensionality reduction.Finally,the challenges and new research directions of the current semi supervised network traffic analysis methods in the future are pointed out.
作者 庞兴龙 朱国胜 PANG Xing-long;ZHU Guo-sheng(School of Computer and Information Engineering,Hubei University,Wuhan 430062,China)
出处 《计算机科学》 CSCD 北大核心 2022年第S01期544-554,611,共12页 Computer Science
基金 赛尔网络下一代互联网技术创新项目(NGII20190104)。
关键词 半监督学习 流量分析 半监督分类 网络数据流 Semi supervised learning Traffic analysis Semi supervised classification Network data flow
  • 相关文献

参考文献6

二级参考文献50

  • 1王晓丹,郑春颖,吴崇明,张宏达.一种新的SVM对等增量学习算法[J].计算机应用,2006,26(10):2440-2443. 被引量:21
  • 2Sen S, Wang J. Analyzing Peer-to-Peer Traffic across Large Networks[C]. IEEE/ACM Transactions on Networking. NJ: IEEE Press, 2004. 219-232 被引量:1
  • 3Plissonneau L, Costeux J L, Brown P. Analysis of Peer-to-Peer Traffic on ADSL[J]. In PAM 2005, volume 3431 of LNCS Springer, 2005.69-82 被引量:1
  • 4RFC3971. Requirements for IP Flow Information Export (IPFIX) [S]. 被引量:1
  • 5Hifn, Inc. Why You Need Flow Classification, Technical White Paper [-EB/OL]. http://www. hifn. com/docs/a/WP-0001-00- Why-You-Need-Flow-Classification- pdf. September 2001 被引量:1
  • 6IANA. http://www.iana. org/assignments/port-numbers[S]. 被引量:1
  • 7Kim M S, Won Y J, Hong J W K. Application-Level Traffic Monitoring and an Analysis on IP Networks [J].ETRI journal, 2005,27(11) :22-42 被引量:1
  • 8Roughan M, Sen S, Spatscheck O, Duffield N. Class-ot-service mapping for QoS: A Statistical Signature-based Approach to IP Traffic Classification. In:Proc. ACM. SIGCOMM IMC 2004, Taormina, Italy, Oct. 2004. 135-148 被引量:1
  • 9Moore A W, Papagiannaki K. Toward the Accurate Identification of Network Applications[C].In PAM2005. Boston, MA, 2005. 41-54 被引量:1
  • 10Kang H J, Kim M S, Hong J W-K. A Method on Multimedia Service Traffic Monitoring and Analysis[J]. In DSOM 2003. Lecture Notes in Computer Science 2867. Heidelberg, Germany, Oct. 2003. 93-105 被引量:1

共引文献50

同被引文献42

引证文献6

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部