摘要
自动合成新闻已经被广泛应用于金融市场分析、事件报道等格式化新闻信息中,具有重大的社会影响。然而,采用集中式的存储方式进行监管,容易导致信息被监管者或第三方窃取和篡改。因此,在保证检测效率以及准确率的前提下保护信息不被窃取和篡改显得尤为重要。本课题提出一种符合监管合规性的自动合成新闻检测方法,目的是通过发放数据访问令牌,在确保只有监管机构能处理信息的同时将数据活动记录在分布式账本中。该方法设计了两类分布式账本,并通过智能合约调用,以实现认证授权机制和日志记录,只有诚实地参与才能获得区块链的认可并证明符合监管的合规性。此外,该方法采用轻量级的检测算法IDF-FastText赋予边缘节点计算能力,从源头上遏止各种自动合成新闻的肆意传播,实现监管的及时性。将基于GAN的GPT-2检测模型部署在服务器上以供监管机构进行检测结果的验证。最终,通过实验证明了所提设计理念的可行性。
Automatic Synthetic news has been widely used in formatted news information such as financial market analysis and event reports,which has great social impact.However,when centralized storage is adopted for regulatory,it is easy for regulators or third parties to steal and tamper with the information.Therefore,under the premise of ensuring detection efficiency and accur-acy,it is particularly important to protect private information from being leaked.In this paper,an automaticsynthetic news detection method is proposed,which meets the requirements of regulations.The goal is to record data activities in distributed ledger while ensuring that only regulatory agencies can process news information by data access token.This method designs two types of distributed ledgers and calls them through intelligent contracts to realize authorization mechanism and log recording.Only honest participation can be recognized by the blockchain and prove compliance with regulation.Furthermore,the method endows edge nodes with computing power by adopting lightweight detection algorithms IDF-FastText,prevents the proliferation of various synthetic news from the source,and realizes the timeliness of regulation.The GPT-2 detection algorithm based on general adversarial networks(GAN)is deployed on the server for the regulator to verify the detection results.Finally,the feasibility of the proposed design concept is proved by experiments.
作者
毛典辉
黄晖煜
赵爽
MAO Dian-hui;HUANG Hui-yu;ZHAO Shuang(Beijing Key Laboratory of Big Data Technology for Food Safety,Beijing Technology and Business University,Beijing 100048,China;National Engineering Laboratory for Agri-product Quality Traceability,BeijingTechnology and Business University,Beijing 100048,China)
出处
《计算机科学》
CSCD
北大核心
2022年第S01期523-530,共8页
Computer Science
基金
国家社会科学基金(18BGL202)。
关键词
区块链
数据保护
新闻检测
深度学习
Blockchain
Data protection
News detection
Deep learning