期刊文献+

产品网络评论特征词和观点词识别技术研究

Research on Recognition Technology of Feature Words and Opinion Words in Product Network Reviews
下载PDF
导出
摘要 产品评论对产品制造商和潜在消费人群都具有很高的研究价值。除了了解产品评论外,产品制造商还需要获得对其竞争对手产品性能的评论。潜在消费者则可以通过现有评论获得购买建议。因此,研究产品评论特征词、观点词识别技术非常有必要。本文针对中文产品评论,利用自然语言处理(Natural Language Processing,NLP)技术对产品评论中的特征词和观点词进行识别和分析。 Product reviews have high research value for product manufacturers and potential consumers. In addition to understanding product reviews, product manufacturers also need to obtain comments on the performance of their competitors’ products. Potential consumers can obtain purchase suggestions through existing comments. Therefore, it is necessary to study the recognition technology of product comment feature words and opinion words. Aiming at Chinese product reviews, this paper uses NLP technology to identify and analyze feature words and opinion words in product reviews.
作者 晏丞骁 YAN Chengxiao(Bishop's University,Sherbrooke Quebec JIM 1Z7,Canada)
机构地区 比索大学
出处 《信息与电脑》 2022年第5期31-33,共3页 Information & Computer
关键词 产品评论 特征词 观点词 自然语言处理 product reviews feature words opinion words NLP
  • 相关文献

参考文献9

二级参考文献38

  • 1Zhang L, Liu B, Lim S H, et al. Extracting and Ranking Product Features in Opinion Documents [C]. In: Proceedings of the 23rd International Conference on Computational Lingusitics (COLING), Beijing, China. Stroudsburg, PA, USA: ACL, 2010: 1462-1470. 被引量:1
  • 2Jin W, Ho H H, Srihari R K. A Novel Lexicalized HMM-based Learning Framework for Web Opinion Mining [C]. In: Proceedings of the 26th Annual International Conference on Machine Learning (ICML), Montreal, Canada. New York, NY, USA: ACM, 2009: 465-472. 被引量:1
  • 3Li F T, Han C, Huang M L, et al. Structure-aware Review Mining and Summarization [C]. In: Proceedings of the 23rd International Conference on Computational Linguistics (COLING), Beijing, China. Stroudsburg, PA, USA: ACL, 2010: 653-661. 被引量:1
  • 4Wu Y B, Zhang Q, Huang X J, et al. Phrase Dependency Parsing tbr Opinion Mining [C]. In: Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing (EMNLP), Singapore. Morristown, N J, USA: ACL, 2009: 1533-1541. 被引量:1
  • 5Titov 1, McDonald R. Modeling Online Reviews with Multi-grain Topic Models [C]. In: Proceedings of the 17th International Conference on World Wide Web (WWW), Beijing, China. New York, NY, USA: ACM, 2008:111-120. 被引量:1
  • 6Zhao W X, Jiang J, Yan H F, et al. Jointly Modeling Aspects and Opinions with a MaxEnt-LDA Hybrid [C]. In: Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing (EMNLP), Massachusetts, USA. Stroudsburg, PA, USA: ACL, 2010: 56-65. 被引量:1
  • 7Hu M Q, Liu B. Mining and Summarizing Customer Reviews[C]. In: Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), Seattle, USA. New York, NY, USA: ACM, 2004: 168-177. 被引量:1
  • 8Aravindan S, Ekbal A. Feature Extraction and Opinion Mining in Online Product Reviews [C]. In: Proceedings of the 2014 International Conference on Information Technology (ICIT), Bhubaneswar, India. New York, NY, USA: IEEE, 2014: 94-99. 被引量:1
  • 9Qiu G, Liu B, Bu J J, et al. Opinion Word Expansion and Target Extraction Through Double Propagation [J]. Computational Linguistics, 20 I1, 37(1 ): 9-27. 被引量:1
  • 10Hai Z, Chang K Y, Cong G. An Association-Based Unified Framework for Mining Features and Opinion Words [J]. ACM Transaction on Intelligent Systems and Technology, 2015, 6(2): 2601-2626. 被引量:1

共引文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部