期刊文献+

融合多特征和通道感知的目标跟踪算法 被引量:5

Object Tracking Algorithm with Fusion of Multi-feature and Channel Awareness
下载PDF
导出
摘要 针对深度特征描述目标在跟踪过程中出现漂移或过拟合的问题,提出了一种融合多特征和通道感知的目标跟踪算法。应用预训练模型提取跟踪目标的深度特征,依据该特征构建相关滤波器并计算各通道对应滤波器的权重系数,根据权重系数对特征通道进行筛选;对保留的特征通过标准差计算生成统计特征并与原特征融合,采用融合后的特征构建相关滤波器并做相关运算,获取特征响应图确定目标的位置及尺度;利用跟踪结果区域的深度特征对融合特征构建的滤波器进行稀疏在线更新。所提算法和目前一些主流的跟踪算法在公共数据集OTB100、VOT2015和VOT2016上进行测试。与UDT相比,在不影响跟踪速度的同时,该算法具有更强的鲁棒性和更高的跟踪精度。实验结果表明,所提出的算法在目标尺度发生变化、快速运动和背景干扰等挑战下均表现出较强的鲁棒性。 In order to solve the problem of drift or overfitting in the tracking process of depth feature description target,an object tracking algorithm combining multiple features and channel perception is proposed.The depth feature of the tracking target is extracted by the pre-training model,the correlation filter is built according to the feature,and the weight coefficient of each channel filter is calculated.According to the weight coefficient,the feature channel generated by the pre-training model is screened.The standard deviation of the retained features is calculated to generate statistical features and they are fused with the original features.The fused features are used to construct related filters and correlation operations are performed to obtain feature response maps to determine the location and scale of the target.Based on the depth feature of the tracking result area,the filter constructed by fusion feature is made sparse online updates.The algorithm in this paper and some current mainstream tracking algorithms are tested on the public datasets OTB100,VOT2015 and VOT2016.Compared with UDT,without affecting the tracking speed,the proposed algorithm has stronger robustness and higher tracking accuracy.The experimental results show that the proposed algorithm shows strong robustness under the challenges of target scale variation,fast motion and background clutters.
作者 赵运基 范存良 张新良 ZHAO Yunji;FAN Cunliang;ZHANG Xinliang(College of Electrical Engineering and Automation,Henan Polytechnic University,Jiaozuo,Henan 454003,China)
出处 《计算机科学与探索》 CSCD 北大核心 2022年第6期1417-1428,共12页 Journal of Frontiers of Computer Science and Technology
基金 国家自然科学基金(U1504506) 河南省科技攻关项目(192102210073) 河南省高等学校青年骨干教师培养计划(2017GGJS051) 河南省高校基本科研业务费项目(NSFRF200310)。
关键词 目标跟踪 深度特征 通道筛选 特征融合 稀疏更新 object tracking depth feature channel screening feature fusion sparse update
  • 相关文献

参考文献4

二级参考文献24

共引文献211

同被引文献27

引证文献5

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部