期刊文献+

积极还是沉默:学科差异视角下学术社交网络用户聚类与利用行为研究 被引量:1

Positive or Silent:Research on Clustering and Use of Academic Social Networking Site from the Perspective of Disciplines Difference
原文传递
导出
摘要 [目的/意义]学术社交网络已经成为科研工作者们维护人际关系、进行科研合作和学术交流的重要途径,开展用户行为聚类研究对学术社交网络平台准确识别用户组成成分、理解用户行为、提升服务效率具有重要意义。[方法/过程]文章以ResearchGate(RG)为研究对象,在构建平台用户行为的描述模型基础上,利用K-means算法对学术社交网络的用户利用行为进行聚类分析,并立足于学科差异视角探索不同学科用户分布与行为特征。[结果/结论]研究表明RG用户可被划分为10类,不同用户群体在平台功能的利用方面存在较明显的行为偏好差异。同时,学术社交网络的用户利用行为存在学科差异,自然科学类用户类型分布较为均匀,较少呈现极端偏向某一用户群体的情况,利用行为也更加积极;而人文社科类用户主要由潜水用户组成,表现相对沉默。 [Purpose/significance]Academic social networking sites have become an important way for researchers to maintain interpersonal relationships and conduct scientific research cooperation and academic exchanges.Carrying out user behavior clustering research is significant for academic social network platforms to accurately identify user components,understand user behavior and improve service efficiency.[Method/process]Taking ResearchGate(RG)as the research object,this paper used k-means algo-rithm to cluster and analyze the behavior of users on academic social networking sites based on the construction of a descriptive mod-el of user behavior.Besides,this study explored the distribution and the behavioral characteristics of users from the perspective of disciplinary differences.[Result/conclusion]The results show that RG users can be divided into 10 categories,with different user groups having different preferences in the use of platform’s functions;meanwhile,there exists disciplinary differences in the usage behavior of users of academic social networking sites.To be specific,natural sciences’users are more evenly distributed,less ex-tremely biased towards one user's group and more active in their usage behavior,while humanities and social sciences’users are mainly composed of lurkers who are more reticent.
作者 严炜炜 黄为 Yan Weiwei
出处 《情报理论与实践》 CSSCI 北大核心 2022年第6期138-146,共9页 Information Studies:Theory & Application
基金 国家自然科学基金青年项目“群体差异视角下学术社交网络用户交互与合作机制研究”的成果之一,项目编号:71904148。
关键词 用户聚类 利用行为 学术社交网络 学科差异 K-MEANS算法 user clustering usage behavior academic social network discipline difference K-means algorithm
  • 相关文献

参考文献20

二级参考文献255

  • 1谭春辉,朱宸良,苟凡.虚拟学术社区中科研人员合作行为影响因素研究——基于质性分析法与实证研究法相结合的视角[J].情报科学,2020,38(2):52-58. 被引量:13
  • 2张国英,沙云,刘旭红,刘玉树.高维云模型及其在多属性评价中的应用[J].北京理工大学学报,2004,24(12):1065-1069. 被引量:27
  • 3赵国富,曲国庆.聚类分析中CLARA算法的分析与实现[J].山东理工大学学报(自然科学版),2006,20(2):45-48. 被引量:9
  • 4汪小帆,李翔,陈关荣.网络科学导论[M].北京:高等教育出版社,2012. 被引量:67
  • 5Kumar R, Novak J, Tomkins A. Structure and evolution of online social networks [M]//Link Mining: Models, Algo rithms, and Applications. New York: Springer, 2010:337-357. 被引量:1
  • 6Mislove A, Marcon M, Krishna P G, et al. Measurement and analysis of online social networks [C]//Proceedings of the 7th ACM SIGCOMM Conference on Internet Measurement, Ser. IMC '07. New York.. ACM, 2007 : 29 - 42. 被引量:1
  • 7Kwak H, Lee C, Park H, et al. What is twitter, a social network or a news media? [C]//Proceedings of the 19th Inter- national Conference on World Wide Web. New York: ACM, 2010: 591 -600. 被引量:1
  • 8Java A, Song X, Finin T, et al. Why we twitter., understanding mieroblogging usage and communities [C]//Proceedings of the 9th WebKDD and 1st SNA-KDD 2007 Workshop on Web Mining and Social Network Analysis. New York.. ACM, 2007: 56- 65. 被引量:1
  • 9Fan P Y, Li P, Jiang Z H, et al. Measurement and analysis of topology and information propagation on Sina micro-blog [C]//Proceeding of IEEE International Conference on: Intelligence and Security Informatics. New York: IEEE Press, 2011:396 -401. 被引量:1
  • 10Guo Z, Li Z, Tu H. Sina microblog., an information-driven online social network [C]//Cyberworlds (CW), 2011 Inter- national Conference on Cyberworlds (CW). New York: IEEE Press, 2011:160 - 167. 被引量:1

共引文献202

同被引文献23

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部