期刊文献+

NSCT轮廓与主方向一致性红外与可见光图像配准 被引量:3

Infrared and Visible Image Registration Based on NSCT Contour and Main Direction Consistency
下载PDF
导出
摘要 针对红外与可见光图像配准中特征点匹配难的问题,提出了NSCT轮廓提取与主方向一致性匹配的红外与可见光图像配准方法。先将NSCT变换用于提取红外与可见光图像的轮廓曲线图,然后使用CSS角点检测算法提取轮廓曲线图上的角点作为特征点,再以轮廓曲线的中线作为特征点的主方向,计算红外与可见光图像上特征点主方向的SIFT描述符作为特征点的特征描述,最后使用特征点主方向一致性匹配的方法去除误匹配的点,进而计算仿射变换参数。实验结果表明,所提方法的平均均方根误差为2.36,平均正确匹配率达到了91.6%,保证了两种图像相同特征点提取和匹配的准确度,从而提高了图像配准的精度。 Aiming at the difficulty of feature point matching in infrared and visible image registration,an infrared and visible image registration method based on NSCT contour extraction and main direction consistency matching is proposed.Firstly,NSCT transform is used to extract the contour curves of infrared and visible images,and the corners on the contour curves are extracted as feature points by using CSS corner detection algorithm.Then,the middle line of the contour curve is used as the main direction of the feature points,and the SIFT descriptor of the main direction of the feature points on the infrared and visible images is calculated as the feature description of the feature points.Finally,the mismatched points are removed by using the method of main direction consistency matching of the feature points,and the affine transformation parameters are calculated.Experimental results show that,the average Root Mean Square Error(RMSE) of the proposed method is 2.36,and the average Correct Matching Ratio(CMR) reaches 91.6%,which ensures the accuracy of extracting and matching the same feature points on two kinds of images and improves the accuracy of image registration.
作者 段琳锋 侯新国 胡致远 DUAN Linfeng;HOU Xinguo;HU Zhiyuan(School of Electrical Engineering,Naval University of Engineering,Wuhan 430000,China)
出处 《电光与控制》 CSCD 北大核心 2022年第6期1-5,共5页 Electronics Optics & Control
基金 国家自然科学基金(41774021)。
关键词 红外图 可见光图 NSCT 轮廓提取 特征匹配 图像配准 infrared image visible image NSCT contour extraction feature matching image registration
  • 相关文献

参考文献10

二级参考文献93

  • 1罗久飞,邱广,张毅,冯松,韩冷.基于自适应双阈值的SURF双目视觉匹配算法研究[J].仪器仪表学报,2020,41(3):240-247. 被引量:41
  • 2李俊山,谭园园,张媛莉.SSDA的改进算法[J].电光与控制,2007,14(2):66-68. 被引量:14
  • 3高峰,文贡坚,吕金建.基于干线对的红外与可见光最优图像配准算法[J].计算机学报,2007,30(6):1014-1021. 被引量:26
  • 4Ribarie S, Marcetic D, Vedrina D S. A knowledge-based system for the non-destructive diagnostics of facade isolation using the information fusion of visual and IR images[J]. Expert Systems with Applications, 2009,36(2) : 3812 - 3821. 被引量:1
  • 5Zitovd B, Flusser J. Image registration methods: a survey[J]. Image and Vision Computing, 2003,21 ( 11 ) : 977 - 1000. 被引量:1
  • 6Chen S, Guo Q, Leung H, et al. A maximum likelihood approach to joint image registration and fusion[J]. IEEE Trans. on Image Processing ,2011,20(5) : 1363 - 1373. 被引量:1
  • 7Hong H, Schonfeld D. Maximum-entropy expectation-maximization algorithm for image reconstruction and sensor field estimation[J]. IEEE Trans. on Image Processing, 2008,17 (6) : 897 - 907. 被引量:1
  • 8Reddy B, Chatierji B N. An FFT-based technique for translation, rotation, and scale-invariant image registration[J]. IEEE Trans. on Image processing and Remote Sensing ,1996,5(8) :1266 - 1271. 被引量:1
  • 9Roman M, Ahmed L, Marek B. Outlier-resistant dissimilarity measure for feature-based image matching [C]//Proc. of the International Conference on Pattern Recognition,2010:864 - 869. 被引量:1
  • 10Lowe D. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004,60 (2) :91- 110. 被引量:1

共引文献74

同被引文献31

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部