期刊文献+

DCE-MRI一阶纹理特征预测乳腺癌分子分型可行性研究 被引量:2

First-order Texture Features of DCE-MRI in Predicting the Molecular Subtypes of Breast Cancer
下载PDF
导出
摘要 目的:初步探讨核磁共振动态增强扫描的一阶纹理特征预测乳腺癌分子分型可行性。方法:回顾性分析229例确诊乳腺癌患者的临床及影像资料,选取肿瘤最大层面磁共振动态增强三分钟左右图像,导入MaZda软件,手动勾画感兴趣区并提取9个一阶纹理特征(Mean、Variance、Kurtosis、Skewness、Perc 1%、Perc 10%、Perc 50%、Perc 90%、Perc 99%),比较乳腺癌四种分子分型的一阶纹理特征。结果:峰值(Kurtosis)及偏度(Skewness)在乳腺癌四种分子分型之间有统计学差异,峰值和偏度在鉴别Luminal A型与Luminal B型及HER-2过表达型有统计学意义。结论:乳腺癌DCE-MRI图像一阶纹理特征有助于预测乳腺癌分子分型。 Objective:To explore the feasibility of predicting molecular subtypes of breast cancer by first-order texture features of dynamis contrast-enhanced magnetic resonance imaging(DCE-MRI).Methods:Clinical and imaging data of 229 diagnosed breast cancer patients were retrospectively analyzed. Dynamic enhanced 3-minute on the maximum level of tumor were selected and imported into MaZda software. Region of interest(ROI)were draw by manually, 9 first-order texture features(including Mean, Variance, Kurtosis, Skewness, Perc 1%, Perc 10%, Perc 50%, Perc 90%, Perc 99%)were extracted, and compared the first-order texture features of four molecular types of breast cancer.Results:There were differences in Kurtosis and Skewness of four molecular types of breast cancer. There were statistically significant in Kurtosis and Skewness compare Luminal A type with Luminal B type and HER-2 type.Conclusion:The first-order texture features of DCE-MRI are helpful to predict the molecular subtypes of breast cancer.
作者 王兰兰 侯静 金科 Wang Lanlan;Hou Jing;Jin Ke(Department of Radiology,School of Pediatrics,University of South China(Hunan Children's Hospital),Changsha,Hunan 410007;The Radiological Diagnosis Center,Hunan Cancer Hospital,Changsha,Hunan 410013)
出处 《现代医用影像学》 2022年第4期595-599,共5页 Modern Medical Imageology
关键词 乳腺癌 分子分型 动态增强扫描 纹理分析 breast cancer molecular subtypes dynamic contrast-enhanced magnetic resonance imaging texture analysis
  • 相关文献

参考文献6

二级参考文献37

  • 1高微波,邓鹏飞,杨全新,何拓,李晓会,王琳,陈吉新,贺心畋,陈欣.基于DCE-MRI影像组学鉴别乳腺良恶性肿块的可行性研究[J].临床放射学杂志,2020,39(4):674-679. 被引量:12
  • 2Goldhirsch A, Wood WC, Coates AS, et al. Strategies for subtypes--dealing with the diversity of breast cancer: highlights of the St. Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011 [ J]. Ann Oncol,2011,22 (8) :1736 - 1747. 被引量:1
  • 3Mazurowski MA, Zhang J, Grimm J, et al. Radiogenomic analysis of breast cancer: luminal B molecular subtype is associated with enhancement dynamics at MR imaging [ J ]. Radiology, 2014,273 ( 2 ) : 365 - 372. 被引量:1
  • 4Schnitt SJ. Will molecular classification replace traditional breast pathology? [ J 1. International Journal of Surgical Pathology, 010,18 ( Suppl3 ) : 162S - 166S. 被引量:1
  • 5Spitale A, Mazzola P, Soldini D, et al. Breast cancer classification according to immunohistochemical markers: clinicopathologic features and short-term survival analysis in a population-based study from the South of Switzerland[ J]. Annals of Oncology,2009,20(4) :628 -635. 被引量:1
  • 6Teifke A, Behr O, Schmidt M, et al. Dynamic MR imaging of breast lesions: correlation with microvesse! distribution pattern and histologic characteristics of prognosis [ J ]. Radiology,2006, 239(2) :351 -360. 被引量:1
  • 7Segal E, Sirlin CB, Ooi C, et al. Decoding global gene expression programs in liver cancer by noninvasive imaging [ J ]. Nature Biotechnology, 2007,25 ( 6 ) : 675 - 680. 被引量:1
  • 8Grimm LJ, Zhang J, Mazurowski MA. Computationa| approach to radiogenomics of breast cancer: luminal A and luminal B molecular subtypes are associated with imaging features on routine breast MRI extracted using computer vision algorithms [ J ]. Journal of Magnetic Resonance Imaging, 2015,42 ( 4 ) : 902 - 907. 被引量:1
  • 9Sutton E J, Oh JH, Dashevsky BZ, et al. Breast cancer subtype intertumor heterogeneity: MRI-based features predict results of a genomic assay [ J ]. Journal of Magnetic Resonance Imaging, 2015,42(5) :1398 - 1406. 被引量:1
  • 10Yang Q, Li L, Zhang J, et al. Computer-Aided Diagnosis of Breast DCE-MRI Images Using Bilateral Asymmetry of Contrast Enhancement Between Two Breasts [ J ]. Journal of Digital Imaging,2014,27 ( 1 ) : 152 - 160. 被引量:1

共引文献412

同被引文献12

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部