摘要
针对空间机械臂辅助深层采样任务中的建模与控制问题,基于刚体李群SO(3)方法对机械臂进行建模。通过梯形规划对机械臂进行轨迹规划,采用阻抗控制方法控制机械臂运动。推导了李群SO(3)模型下机械臂关节空间与末端笛卡尔空间之间的雅可比矩阵,并且得到了两个空间的相互转换关系。采用锥互补方法计算采样机械臂与复杂接触面的碰撞力,并基于非光滑算法求解锥互补条件与系统动力学方程。通过对比位置控制与阻抗控制,证明了阻抗控制在实际应用过程中能够更加柔顺地控制机械臂与接触面进行接触。通过对控制参数进行调整,探究了不同控制参数对机械臂控制的影响,优化得到了合适的控制参数,从而能控制机械臂辅助完成深层采样的任务。
Aiming at the modeling and control problems in space manipulator-assisted deep sampling tasks,the manipulator is modeled based on the rigid body Lie group SO(3)method.The trajectory planning of the manipulator is carried out by trapezoidal planning,and the motion is controlled by impedance control method.The Jacobian matrix between the joint space and Cartesian space of the manipulator under the Lie group SO(3)model is derived,and the conversion relation between the two spaces is obtained.The cone complementarity method is used to calculate the collision force between the sampling manipulator and the complex contact surface,and the non-smooth algorithm is used to solve the cone complementarity conditions and the system dynamics equations.By comparing the position control and impedance control,it is proved that the impedance control can control the the manipulator to contact the surface more smoothly in the practical application.By adjusting the control parameters,the influence of different control parameters on the control of the manipulator is explored,and the appropriate control parameters are optimized,so as to control the manipulator to assist in completing the deep sampling tasks.
作者
聂佳伟
辛鹏飞
荣吉利
王瑞
潘成龙
程修妍
NIE Jiawei;XIN Pengfei;RONG Jili;WANG Rui;PAN Chenglong;CHENG Xiuyan(School of Aerospace Engineering,Beijing Institute of Technology,Beijing 100081,China;Beijing Institute of Spacecraft System Engineering,Beijing 100094,China;School of Mathematics and Statistics,Qilu University of Technology(Shandong Academy of Sciences),Jinan 250353,China)
出处
《宇航学报》
EI
CAS
CSCD
北大核心
2022年第5期580-592,共13页
Journal of Astronautics
基金
“十三五”民用航天预研项目(D020205)。
关键词
空间机械臂
阻抗控制
锥互补
深层采样
Manipulator
Impedance control
Cone complementarity problem
Deep sampling