期刊文献+

基于改进SSD的光伏组件故障定位检测 被引量:3

Photovoltaic module fault location detection based on improved SSD
下载PDF
导出
摘要 为准确定位航拍红外图像中光伏组件故障的区域位置,在单阶段多框检测(Single Shot Multibox Detector,SSD)模型的基础上设计了ResNet18_FPN_DN_SSD模型。首先用ResNet18替代SSD模型的基础网络VGG16,以提高故障特征的提取能力;然后引入DR loss,针对目标样本类别失衡及负样本过多的问题进行优化改善;最后在非极大值抑制(Non-Maximum Suppression,NMS)基础上做加权处理,使分类置信度高的边框充分利用周围对象的信息,提高预测框的分类置信度与定位准确率。实验表明:所提出的模型对图像中故障目标的检测效果,在定位精度、分类置信度和m AP上均优于传统SSD模型。 For accurate positioning of photovoltaic component failures in aerial infrared image area location,the ResNet18_FPN_DN_SSD model is designed on the basis of single stage box testing( Single Shot Multibox Detector,SSD) model. Firstly,Resnet18 was used to replace the basic network VGG16 of the SSD model to improve the ability of fault feature extraction. Then,DR loss is introduced to optimize and improve the imbalance of target sample categories and excessive negative samples. Finally,non-maximum suppression( NMS) was applied to improve the classification confidence and location accuracy of the prediction box by making full use of the information of the surrounding objects. Experimental results show that the proposed model is superior to the traditional SSD model in location accuracy,classification confidence and m AP.
作者 姜萍 王天亮 栾艳军 JIANG Ping;WANG Tianliang;LUAN Yanjun(College of Electronic Information Engineering,Hebei University,Baoding Hebei 071000,China)
出处 《激光杂志》 CAS 北大核心 2022年第5期43-48,共6页 Laser Journal
基金 河北省自然科学基金(No.A2020201021)。
关键词 故障检测 特征融合 SSD 光伏组件 fault detect feature fusion SSD photovoltaic module
  • 相关文献

参考文献9

二级参考文献83

  • 1张世勇.一种新的混合粒子群优化算法[J].重庆工商大学学报(自然科学版),2007,24(3):241-245. 被引量:6
  • 2Dlagnekov L. Video-based car surveillance: license plate, make, and model recognition[D]. San Diego: University of California, 2005. 被引量:1
  • 3Kato T, Ninomiya Y, Masaki I. Preceding vehicle recognition based on learning from sample images[J]. IEEE Transactions on Intelligent Transportation Systems, 2002, 3(4): 252-260. 被引量:1
  • 4Viola P, Jones M. Rapid object detection using a boosted cas- cade of simple features[C]//Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pat- tern Recognition, Hawaii, USA, Dec 8-14, 2001. Piscataway, NJ, USA: IEEE, 2001, 1: 511-518. 被引量:1
  • 5Li Xinhao. Resarch on key technologies of vehicle detection in intelligent transportation system[D]. Changchun: Jilin University, 2011. 被引量:1
  • 6Ma Bei. Vehicle identification technology in video surveil- lance[D]. Xi' an: Xidian University, 2010. 被引量:1
  • 7Yao Yuan. The feature extraction of vehicle face image[D]. Changsha: Central South University, 2008. 被引量:1
  • 8Schapim R E, Singer Y. Improved boosting algorithms using confidence-rated predictions[J]. Machine Learning, 1999, 37 (3): 297-336. 被引量:1
  • 9Lienhart R, Maydt J. An extended set of Haar-like features for rapid object detection[C]//Proceedings of the 2002 Inter- national Conference on Image Processing, Rochester, USA, Sep 22-25, 2002. Piscataway, NJ, USA: IEEE, 2002, 1: 900-903. 被引量:1
  • 10Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110. 被引量:1

共引文献134

同被引文献23

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部