期刊文献+

基于MIC-(PSO-BP)-MWA-KDE的风电机组齿轮箱油温预警方法 被引量:1

Fault Warning Method of Gearbox oil Temperature of Wind Turbine Based on MIC-(PSO-BP)-MWA-KDE
下载PDF
导出
摘要 针对风电机组齿轮箱故障预警问题,提出一种基于MIC-(PSO-BP)-MWA-KDE的齿轮箱油温预警方法。首先,使用最大互信息系数(Maximal Information Coefficient,MIC)求出与齿轮箱油温相关性高的参数作为模型的输入,采用PSO-BP神经网络构建齿轮箱油温预测模型。然后,通过计算齿轮箱油温实际值与预测值的残差绝对值,结合移动加权平均法(Moving Weighted Average,MWA)、核密度估计(Kernel Density Estimation,KDE)建立齿轮箱状态监测模型。通过实际案例分析可知,本文提出的预警方法可提前齿轮箱油温异常预警时间,预警时间提前约11小时。 Aiming at the problem of gearbox fault warning of the wind turbine,a gearbox oil temperature fault warning method based on MIC-(PSO-BP)-MWA-KDE is proposed.Firstly,the parameters with a high correlation with gearbox oil temperature are obtained by using the maximum information coefficient(MIC)as the input of the model.And the PSOBP neural network is used to construct the gearbox oil temperature forecasting model.Then,the gearbox condition monitoring model is established by calculating the absolute residual value of the actual value and predicted value of gearbox oil temperature,combined with moving weighted average(MWA) and kernel density estimation(KDE).Through the real case analysis,it can be seen that the fault warning method presented in this paper can advance the early warning time of abnormal gearbox oil temperature by about 11 hours.
作者 彭丽君 刘绪军 PENG Li-jun;LIU Xu-jun(School of Big data and Computer,Jiangxi University of Engineering,Xinyu 338000,China)
机构地区 江西工程学院
出处 《电脑与信息技术》 2022年第3期49-52,共4页 Computer and Information Technology
关键词 风机齿轮箱 状态监测 故障预警 神经网络 wind turbine gearbox condition monitoring fault warning neural network
  • 相关文献

参考文献7

二级参考文献40

共引文献282

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部