摘要
在前人研究的基础上,对Hom-非交换代数做了进一步研究。首先,给出了关于Hom-Leibniz-Rinehart代数上Hom-作用的定义。其次,在Hom-Leibniz-Rinehart代数和Hom-Leibniz A-代数的直和代数上定义了左锚映射、右锚映射和自同态,使二者构成半直积结构,证明了其Hom-作用与Hom-Leibniz-Rinehart代数之间存在一一对应的关系。最后,给出了Hom-Leibniz-Rinehart代数交叉模的定义,证明了其交叉模与代数同态之间的等价关系。
On the basis of previous studies,Hom-noncommutative algebra is further studied.Firstly,the definition of Hom-action on Hom-Leibniz-Rinehart algebra is given.Secondly,on the directsum of Hom-Leibniz-Rinehart algebras and Hom-Leibniz A-algebras,it is defined that the left anchor,right anchor and endomorphism are semi-direct products,and it is proved that there is a one-to-one correspondence between their actions and Hom-Leibniz-Rinehart-algebras.Finally,the cross module of Hom-Leibniz-Rinehart algebra is defined,and the corresponding relationship between cross module and algebraic homomorphism is proved.
作者
毕艳会
陈丹露
张明同
BI Yan-hui;CHEN Dan-lu;ZHANG Ming-tong(School of Mathematics and Information Science,Nanchang Hangkong University,Nanchang 330063,China;Shandong Shouguang Educational Science Research Center,Shandong Weifang 262700,China)
出处
《南昌航空大学学报(自然科学版)》
CAS
2022年第1期28-32,共5页
Journal of Nanchang Hangkong University(Natural Sciences)
基金
国家自然科学基金(1196010189,11601219)。