期刊文献+

Convergence analysis for delay Volterra integral equation

下载PDF
导出
摘要 In this article we use Chebyshev spectral collocation method to deal with the Volterra integral equation which has two kinds of delay items. We use linear transformation to make the interval into a fixed interval [-1, 1]. Then we use the Gauss quadrature formula to approximate the solution. With the help of lemmas, we get the result that the numerical error decay exponentially in the infinity norm and the Chebyshev weighted Hilbert space norm. Some numerical experiments are given to confirm our theoretical prediction.
出处 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2022年第2期306-316,共11页 高校应用数学学报(英文版)(B辑)
基金 Supported by Guangdong Provincial Education Projects(2021KTSCX071,HSGDJG21356-372) Project of Hanshan Normal University(521036).
  • 相关文献

参考文献2

二级参考文献15

  • 1H. Brunner, Collocation Methods for Volterra Integral and Related Functional Equations Methods, Cambridge University Press 2004. 被引量:1
  • 2H. Brunner, 3.P. Kauthen, The numerical solution of two-dimensional Volterra Integral Equation, IMA d. Numer. Anal., 9 (1989), 45-59. 被引量:1
  • 3H. Brunner and T. Tang, Polynomial spline collocation methods for the nonlinear Basset equation, Comput. Math. Appl., 18 (1989), 449-457. 被引量:1
  • 4C. Canuto, M.Y. Hussaini, A. Quarteroni and T.A. Zang, Spectral Methods: Fundamentals in Single Domains, Springer-Verlag 2006. 被引量:1
  • 5L.M. Delves, J.L. Mohanmed, Computational Methods for Integral Equations, Cambridge University Press 1985. 被引量:1
  • 6G.N. Elnagar and M. Kazemi, Chebyshev spectral solution of nonlinear Volterra-Hammerstein integral equations, J. Comput. Appl. Math., 76 (1996), 147-158. 被引量:1
  • 7H. Fujiwara, High-accurate numerical method for integral equations of the first kind under multiple-precision arithmetic, Preprint, RIMS, Kyoto University, 2006. 被引量:1
  • 8B. Guo and L. Wang, Jacobi interpolation approximations and their applications to singular differential equations, Adv. Comput. Math., 14 (2001), 227-276. 被引量:1
  • 9B. Guo and L. Wang, Jacobi approximations in non-uniformly Jacobi-weighted Sobolev spaces, J. Approx. Theory, 128 (2004), 1-41. 被引量:1
  • 10S. Mckee, T. Tang and T. Diogo, An Euler-type method for two-dimensional Volterra Integral Equations of the first kind, IMA J. Numer. Anal., 20 (2000), 423-440. 被引量:1

共引文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部