摘要
By tilting a plasma jet and rotating 360°,a large-area can be scanned and sterilized in a short time.Compared with the previous array device,this pipe has the significant advantages of high sterilization uniformity and low gas consumption.Firstly,a rotatable plasma jet device,which can control the swing and rotation of a jet pipe,is designed,and a corresponding theoretical model is established to guide the experiment.Secondly,with Staphylococcus aureus(S.aureus)and Escherichia coli(E.coli)as the target bacteria,the device achieves a short sterilization time of 158 s—the minimum sterilization flow of S.aureus and E.coli is 0.8 slm and 0.6 slm,respectively.The device is compared with an array plasma sterilization device in terms of sterilization speed and gas consumption.The results show that the device is not only better than an array plasma sterilization device with respect to scanning uniformity,but also far less than the array plasma sterilization device in gas consumption of 5 slm.Therefore,the device has great potential in applications involving efficient,large-area sterilization.
基金
partially supported by National Natural Science Foundation of China(Nos.61864001 and 62163009)
Key Projects of Guangxi Natural Science Foundation(No.2021JJD170019)
the Foundation of Guangxi Key Laboratory of Automatic Detecting Technology and Instruments(Guilin University of Electronic Technology)(Nos.YQ21111 and YQ21204)
Innovation Project of Guang Xi Graduate Education(No.YCSW2021181)。